Human motion analysis via axis based representations

Download
2007
Erdem, Sezen
Visual analysis of human motion is one of the active research areas in computer vision. The trend shifts from computing motion fields to understanding actions. In this thesis, an action coding scheme based on trajectories of the features calculated with respect to a part based coordinate system is presented. The part based coordinate system is formed using an axis based representation. The features are extracted from images segmented in the form of silhouettes. We present some preliminary experiments that demonstrate the potential of the method in action similarity analysis.

Suggestions

Efficient detection and tracking of salient regions for visual processing on mobile platforms
Serhat, Gülhan; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
Visual Attention is an interesting concept that constantly widens its application areas in the field of image processing and computer vision. The main idea of visual attention is to find the locations on the image that are visually attractive. In this thesis, the visually attractive regions are extracted and tracked in video sequences coming from the vision systems of mobile platforms. First, the salient regions are extracted in each frame and a feature vector is constructed for each one. Then Scale Invaria...
Articulated motion analysis via axis-based representation
Erdem, Sezen; Tarı, Zehra Sibel (2007-01-01)
Human motion analysis is one of the active research areas in computer vision. The trend shifts from computing motion fields to determining actions. We present an action coding scheme based on a trajectory of features defined with respect to a part based coordinate system. The method does not require prior human model or special motion capture hardware. The features are extracted from images segmented in the form of silhouettes. The feature extraction step ignores 3D effects such as self occlusions or motion...
A comparison of subspace based face recognition methods
Gönder, Özkan; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2004)
Different approaches to the face recognition are studied in this thesis. These approaches are PCA (Eigenface), Kernel Eigenface and Fisher LDA. Principal component analysis extracts the most important information contained in the face to construct a computational model that best describes the face. In Eigenface approach, variation between the face images are described by using a set of characteristic face images in order to find out the eigenvectors (Eigenfaces) of the covariance matrix of the distribution,...
Simultaneous bottom-up/top-down processing in early and mid level vision
Erdem, Mehmet Erkut; Tarı, Zehra Sibel; Department of Computer Engineering (2008)
The prevalent view in computer vision since Marr is that visual perception is a data-driven bottom-up process. In this view, image data is processed in a feed-forward fashion where a sequence of independent visual modules transforms simple low-level cues into more complex abstract perceptual units. Over the years, a variety of techniques has been developed using this paradigm. Yet an important realization is that low-level visual cues are generally so ambiguous that they could make purely bottom-up methods ...
Fast and accurate semiautomatic haptic segmentation of brain tumor in 3D MRI images
Latifi-Navid, Masoud; Bilen, Murat; Konukseven, Erhan İlhan; Doğan, Musa; Altun, Adnan (The Scientific and Technological Research Council of Turkey, 2016-01-01)
In this study, a novel virtual reality-based interactive method combined with the application of a graphical processing unit (GPU) is proposed for the semiautomatic segmentation of 3D magnetic resonance imaging (MRI) of the brain. The key point of our approach is to use haptic force feedback guidance for the selection of seed points in a bounded volume with similar intensity and gradient. For the automatic determination of a bounded volume of segmentation in real time, parallel computation on the GPU is use...
Citation Formats
S. Erdem, “Human motion analysis via axis based representations,” M.S. - Master of Science, Middle East Technical University, 2007.