Energy-efficient real-time coordination and routing framework for wireless sensor and actor networks

Download
2007
Shah, Ghalib Asadullah
In Wireless Sensor Actor Networks (WSANs), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomenon. The presence of actors in this configuration can not be benefited from, unless they are able to execute actions at right place and right time in the event region. The right place can be related to the accurate position of the sensor nodes. While, the right time is related to delivering the packets directly to the appropriate actors within the event specific response times. Hence, the efficient localization of sensor nodes, sensor-actor/actor-actor coordination and real-time routing is indispensable in WSANs. Furthermore, the limited energy levels and bandwidth of the state of art sensor nodes currently impose stringent requirements for low-complexity, low-energy, distributed coordination and cooperation protocols and their implementation. In this study, we propose an integrated framework which addresses the issues of sensors localization, network configuration, data aggregation, real-time data delivery, sensor-actor/actor-actor coordination and energy saving mechanisms. The proposal incorporates novel approaches on three fronts; (1) timing-based sensors localization (TSL) algorithm to localize the sensor nodes relative to actors, (2) real-time coordination and routing protocols and (3) energy conservation. The distributed real-time coordination and routing is implemented in addressing and greedy modes routing. A cluster-based real-time coordination and routing (RCR) protocol operates in addressing mode. The greedy mode routing approach (Routing by Adaptive Targeting, RAT) is a stateless shortest path routing. In dense deployment, it performs well in terms of delay and energy consumption as compared to RCR. To keep the traffic volume under control, the framework incorporates a novel real-time data aggregation (RDA) approach in RCR such that the packets deadlines are not affected. RDA is adaptive to the traffic conditions and provides fairness among the farther and nearer cluster-heads. Finally, framework incorporates a power management scheme that eliminates data redundancy by exploiting the spatial correlation of sensor nodes. Simulation results prove that the framework provides the real-time guarantees up to 95 % of the packets with lesser energy consumption of up to 33 % achieved using MEAC as compared to LEACH and SEP. The packet delivery ratio is also 60 % higher than that of semi-automated architecture. Furthermore the action accuracy is supported by TSL which restricts the localization errors less than 1 meter by tuning it according to the expected velocity of nodes and required accuracy.

Suggestions

Cluster-based coordination and routing framework for wireless sensor and actor networks
Shah, Ghalib A.; Bozyigit, Muslim; Hussain, Faisal B. (2011-08-01)
In Wireless Sensor Actor Networks (WSAN), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomena. Generally, the network is configured to observe multiple events and to react upon each individual event accordingly. Time delay, energy efficiency and reliability are three important aspects of WSAN that require special attention. To ensure efficient and reliable operations of such heterogeneous WSAN, new communication protocols are imperative.
Real-time coordination and routing in wireless sensor and actor networks
Shah, Ghalib A.; Bozyigit, Muslim; Akan, Ozgur B.; Baykal, Buyurman (2006-01-01)
In Wireless Sensor Actor Networks (WSAN), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomena in the field. To ensure efficient and accurate operations of WSAN, new communication protocols are imperative to provide sensoractor coordination in order to achieve energy-efficient and reliable communication. Moreover, the protocols must honor the application-specific real-time delay bounds for the effectiveness of the actors in WSAN.
Routing optimization methods for communication networks
Demircan, Ahmet Emrah; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2005)
This study discusses the routing optimization techniques and algorithms for communication networks. Preventing data loss on overloaded communication links and utilizing link bandwidths efficiently are the main problems of traffic engineering. Load balancing and routing problems are solved using both by heuristics such as genetic algorithms, and simulation techniques. These algorithms work on destination-based or flow-based routing techniques and mainly change the link weight system or try to select the best...
Data sharing and access with a corba data distribution service implementation
Dursun, Mustafa; Bilgen, Semih; Department of Electrical and Electronics Engineering (2006)
Data Distribution Service (DDS) specification defines an API for Data-Centric Publish-Subscribe (DCPS) model to achieve efficient data distribution in distributed computing environments. Lack of definition of interoperability architecture in DDS specification obstructs data distribution between different and heterogeneous DDS implementations. In this thesis, DDS is implemented as a CORBA service to achieve interoperability and a QoS policy is proposed for faster data distribution with CORBA features.
Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
Citation Formats
G. A. Shah, “Energy-efficient real-time coordination and routing framework for wireless sensor and actor networks,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.