Abs/polyamide-6 blends, their short glass fiber composites and organoclay based nanocomposites: processing and characterization

Download
2007
Özkoç, Güralp
The objective of this study is to process and characterize the compatibilized blends of acrylonitrile-butadiene-styrene (ABS) and polyamide-6 (PA6) using olefin based reactive copolymers and subsequently to utilize this blend as a matrix material in short glass fiber (SGF) reinforced composites and organoclay based nanocomposites by applying melt processing technique. In this context, commercially available epoxydized and maleated olefinic copolymers, ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) and ethylene-n butyl acrylate-carbon monoxide-maleic anhydride (EnBACO-MAH) were used as compatibilizers at different ratios. Compatibilizing performance of these two olefinic polymers was investigated through blend morphologies, thermal and mechanical properties as a function of blend composition and compatibilizer loading level. Incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle size. At 5 % EnBACO-MAH, the toughness was observed to be the highest among the blends produced. SGF reinforced ABS and ABS/PA6 blends were prepared with twin screw extrusion. The effects of SGF concentration and extrusion process conditions on the fiber length distribution, mechanical properties and morphologies of the composites were examined. The most compatible organosilane type was designated from interfacial tension and short beam flexural tests, to promote adhesion of SGF to both ABS and PA6. Increasing amount of PA6 in the polymer matrix improved the strength, stiffness and also toughness of the composites. Effects of compatibilizer content and ABS/PA6 ratio on the morphology and mechanical properties of 30% SGF reinforced ABS/PA6 blends were investigated. The most striking result of the study was the improvement in the impact strength of the SGF/ABS/PA6 composite with the additions of compatibilizer. Melt intercalation method was applied to produce ABS/PA6 blends based organoclay nanocomposites. The effects of process conditions and material parameters on the morphology of blends, dispersibility of nanoparticles and mechanical properties were investigated. To improve mixing, the screws of the extruder were modified. Processing with co-rotation yielded finer blend morphology than processing with counter-rotation. Clays were selectively exfoliated in PA6 phase and agglomerated at the interface of ABS/PA6. High level of exfoliation was obtained with increasing PA6 content and with screw speed in co-rotation mode. Screw modification improved the dispersion of clay platelets in the matrix.

Suggestions

Effects of injection molding conditions on the mechanical properties of polyamide/glass fiber composites
Cansever, Cahit Can; Yılmazer, Ülkü; Department of Polymer Science and Technology (2007)
In this study, effect of injection molding process parameters on fiber length and on mechanical properties of Polyamide-6 / glass fiber composite were investigated to produce higher performance composites. Polyamide-6 was first compounded with an E-grade glass fiber in a co-rotating intermeshing twin screw extruder. Then, by using this composite, twenty-five types of experiments were performed by injection molding by changing the barrel temperature, injection pressure, hold pressure, mold temperature, cooli...
Light stability and the effect of temperature on mechanical properties of polypropylene / poly (ethylene-vinyl-acetate) blends
Güçlü, Mehmet; Tinçer, Teoman; Department of Polymer Science and Technology (2007)
The variation in properties of Polypropylene (PP) / Ethylene Vinyl Acetate (EVA) blends upon EVA content, temperature, and light stability were followed by using tensile testing, impact testing, and differential scanning calorimetry (DSC). Young’s modulus of the blends decreased with increasing drawing temperature and EVA content. The stress at break values of the blends slightly increased with EVA whereas decreased with drawing temperature. The percent strain at break values of the blends were found to inc...
Production and characterization of boron containing flame retardant polyamide-6 and polypropylene composites and fibers
Doğan, Mehmet; Bayramlı, Erdal; Department of Polymer Science and Technology (2011)
The main objective of this study was to produce flame retardant polyamide-6 (PA-6) and polypropylene (PP) composites and fibers containing boron compounds. The synergistic effect on flame retardancy of boron compounds (boron silicon containing oligomer (BSi), zinc borate (ZnB), boron phosphate (BPO4), metal oxide doped BPO4 and lanthanum borate (LaB)) with conventional flame retardants were investigated. The synergistic effect of nano-clay with commercial flame retardants was also investigated in order to r...
Composition-property relationship of PCL based Polyurethanes
Güney, Aysun; Hasırcı, Nesrin; Department of Polymer Science and Technology (2012)
The desirable properties of polyurethanes (PUs) such as mechanical flexibility associated with chemical versatility make these polymers attractive in the development of biomedical devices. In this study, various segmented polyurethanes were synthesized through polymerization reactions between polycaprolactone (PCL) diol or triol and excess hexamethylene diisocyanate (HDI) with varying NCO/OH ratios and the effect of composition on the properties of the resultant polyurethane films were examined. Initially, ...
Effect of polymer additives on the physical properties of bitumen based composites
Doğan, Mehmet; Bayramlı, Erdal; Department of Polymer Science and Technology (2006)
Polymer modified bitumen is a binder obtained by the incorporation of various types of polymers in bitumen using mechanical mixing or chemical reactions. There are several factors affecting the properties of polymer modified bituminous composites such as; chemical composition of bitumen, kind of polymer and filler, compatibility of bitumen and polymer, amount of bitumen, polymer and filler, particle size of filler and process conditions. The main objective of this study is to determine the effects of polyme...
Citation Formats
G. Özkoç, “Abs/polyamide-6 blends, their short glass fiber composites and organoclay based nanocomposites: processing and characterization,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.