Ion sensing and molecular logic in supramolecular systems

Download
2007
Coşkun, Ali
Supramolecular chemistry is an emerging field of chemistry which has attracted much attention in recent years as a result of its broad applicability in many areas. Thus, the design of functional supramolecular systems is strongly in demand in this field. For this purpose, we have developed ratiometric fluorescent chemosensors for ion sensing and mechanically interlocked structures for their application in molecular logic. In the first part, we report a novel dimeric boradiazaindacene dye which can be converted in one step to an efficient resonance energy transfer (RET) dyad. In addition, if this modification is done with appropriate ligands, RET can be coupled to ion sensing. The utility of this approach is demonstrated in a highly selective, emission ratiometric chemosensor for Ag(I). In the second part, boradiazaindacene dyads designed as energy transfer casettes were modified to signal cation concentrations ratiometrically. If the energy transfer efficiency is increased by changing spectral overlap on cation binding, an enhancement of emission signal ratios can be obtained. A larger range of ratios results in highly improved sensitivity to analyte concentrations. We demonstrate this approach in a de novo design of a novel and highly selective ratiometric chemosensor for Hg(II) ions. In the last part, we synthesized a two-station [2]catenane composed of an π-electron rich bis-1,5-dihydroxynapthalene[38]-crown-10 (1/5DNPC10) ring interlocked with a second macrocycle containing two π-electron deficient unit, namely, napthodiimide (NpI) and bipyridinium (BIPY)2+ unit using the Cu(I)-catalyzed Huisgen 1,3-cycloaddition reaction. The resulting bistable [2]catenane is isolated as a single co-conformation which is comprised of the 1/5DNP[38]C10 ring around the NpI unit. Thermal activation of the pure NpI-isomer at 70˚C for 60 h leads to the formation of the BIPY2+-isomer by virtue of the circumrotation of the crown-ether ring along the backbone of the other macrocycle over the steric barrier of the tetra-aryl methane units. The energy barrier for the circumrotation is 28.5±0.3 kcal/mol. Electrochemistry of a 1:1 mixture of the two possible isomers shows that the [2]catenane cannot be switched mechanically on account of the large steric barriers presented by the tetra-aryl methane groups on the electron-accepting ring.

Suggestions

Phenylethynyl-bodipy oligomers: bright dyes and fluorescent building blocks
Çakmak, Yusuf; Akkaya, Engin Umut; Department of Chemistry (2008)
Supramolecular chemistry is an emerging field of chemistry which has attracted much attention in recent years as a result of its broad applicability in many areas. Thus, the design of functional supramolecular systems is strongly in demand in this field. For this purpose, we have developed novel phenylethynyl-BODIPY oligomer series which have absorption and emission maxima at the red part of the visible region of electromagnetic spectrum. Careful design to assemble the decyl groups to the system allowed us ...
Design and synthesis of near-ir emitting fluorescent chemosensors for transition metal ions
Kütük, İlker; Akkaya, Engin Umut; Department of Chemistry (2008)
Supramolecular chemistry is an emerging field of chemistry which has attracted much attention in recent years as a result of its broad applicability in many areas. Thus, the design of functional supramolecular systems is strongly in demand in this field. For this purpose, we have developed near-IR emitting ratiometric fluorescent chemosensors for transition metal ions. Judicious placement of dithiodioxaazamacrocycles on the BODIPY chromophore generates this chemosensor which is selective for Hg(II) ions and...
ANNULATION REACTIONS OF 4-METHOXY-2-PYRONE WITH VARIOUS ACTIVE METHYL COMPOUNDS
Tanyeli, Cihangir (Informa UK Limited, 1989-01-01)
Some phenolic biphenyl compounds have been synthesised via the annulation reactions of 4-methoxy-2- pyrone with various active methyl compounds.
Acyl Azides: Versatile Compounds in the Synthesis of Various Heterocycles
Balcı, Metin (Georg Thieme Verlag KG, 2018-04-01)
Carbon-nitrogen bond formation is one of the most important reactions in organic chemistry. Various synthetic strategies for the generation of C-N bonds are described in the literature. For example, primary amines can be easily synthesized by the thermal decomposition of an acyl azide to an isocyanate, i.e. the Curtis rearrangement, followed by hydrolysis; the Curtius rearrangement has been used extensively. Furthermore, the advantage of the Curtius rearrangement is the isolation of acyl azides as well as t...
Naphthazarin-Polycyclic Conjugated Hydrocarbons and Iptycenes
Dengiz, Çağatay; GUTIERREZ, Gregory D.; SWAGER, Timothy M. (American Chemical Society (ACS), 2017-07-21)
The synthesis of a set of naphthazarin-containing polycyclic conjugated hydrocarbons is described herein. Sequential Diels-Alder reactions on a tautomerized naphthazarin core were employed to access the final conjugated systems. Complete conjugation across the backbone can be achieved through complexation with BF2, as observed by (HNMR)-H-1 analysis and UV/vis spectroscopy. Precise synthetic control over the degree of oxidation of naphthazarin quinone Diels-Alder adduct 10 is additionally demonstrated and e...
Citation Formats
A. Coşkun, “Ion sensing and molecular logic in supramolecular systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.