Preparation and evaluation of polymer based microcarriers for hydrophobic anti-cancer drugs

Demetçi, Demet
Chemotherapy is one of the most important treatments for cancer. However, systemic toxicity, drug resistance and unstable kinetics of the drug in the blood are serious problems of chemotherapy. The use of biodegradable polymers for controlled release of anticancer drugs has gained popularity in recent years. Controlled release of drugs from polymeric carriers has some advantages such as improvement in the efficiency of treatment, reduction in systemic toxicity and prevention of the drug resistance that is developed by the cancer cells. In this study, poly(D,L-lactide-co-glycolide) microparticles were used as carriers for the controlled release of all-trans-Retinoic acid, tamoxifen, tamoxifen citrate and idarubicin. It was aimed to prepare a drug carrier system for controlled release of hydrophobic anticancer drugs. The empty and drug loaded poly (D,L-lactide-co-glycolide) microparticles were prepared by solvent extraction/evaporation technique with single emulsion (oil/water). Optimized microparticles were characterized by using inverted light microscopy and scanning electron microscopy to examine their morphology and sizes. Drug content of microparticles and the amount of released drug were determined spectrophotometrically. In vitro toxicity of the microparticles on MCF-7 human breast cancer cells was investigated. It was revealed that the microparticles were smooth and spherical in shape. Their sizes differed in the range of 2-20 m. atRA-loaded microparticles showed approximately 90% encapsulation efficiency and it was confirmed that changing in drug/polymer ratio affected the extend of drug content. Increase in drug content caused a slower release pattern. Moreover, although the empty microparticles caused some toxicity, atRA-loaded PLGA microparticles showed slight cell growth inhibition.


Characterization of liposomal celecoxib formulation as a drug delivery system in colorectal cancer cell lines
Erdoğ, Aslı; Banerjee, Sreeparna; Department of Biotechnology (2012)
Colorectal carcinoma (CRC) is one of the most common cancers and is the leading cause of cancer deaths in much of the developed world. Owing to the high incidence of drug resistance and potential toxic effects of chemotherapy drugs, much research is currently underway to design better strategies for smart drug delivery systems. Cyclooxygenase-2 (COX-2) pathway is associated with poor prognosis in colon carcinomas. The selective COX-2 inhibitor drug Celecoxib (CLX) has been shown to posses COX-2 independent ...
Design of intelligent nanoparticles for use in controlled release
Bayyurt, Banu; Hasırcı, Vasıf Nejat; Department of Biotechnology (2009)
The aim of this project was to design an intelligent controlled release system based on thermoresponsive nanoparticles for cancer therapy and to evaluate the efficiencies of these systems with in vitro cell culture. Poly(Nisopropylacrylamide), an important thermoresponsive polymer, was selected for this study to prepare the responsive nanoparticles. This polymer has an lower critical solution temperature (LCST) of 32 oC, below which it is hydrophilic and above this temperature, it shows hydrophobic behavior...
Folic acid-conjugated polyethylene glycol-coated magnetic nanoparticles for doxorubicin delivery in cancer chemotherapy: Preparation, characterization and cytotoxicity on HeLa cell line
Erdem, Murat; Gündüz, Ufuk (2017-08-01)
Conventional chemotherapy is the most valid method to cope with cancer; however, it has serious drawbacks such as decrease in production of blood cells or inflammation of the lining of the digestive tract. These side effects occur since generally the drugs used in chemotherapy are distributed evenly within the body of the patient and cannot distinguish the cancer cells from the healthy ones. In this study, folic acid (FA)-conjugated, polyethylene-coated magnetic nanoparticles (FA-MNPs), and doxorubicin (Dox...
The role of 15-LOX-1 in resistance to chemotherapeutics
Kazan, Hasan Hüseyin; Gündüz, Ufuk; Department of Biology (2020)
Chemotherapy is one of the best options to treat cancer. However, drug resistance can limit the efficacy of chemotherapeutics. There have been several reasons for the cancer drug resistance including the export of the drug from cells, inactivation of drugs by enzymatic processes, mutations that limit the binding of the drugs to the target proteins, resistance to cell death mechanism by cellular manipulations and reorganization of the cell membrane. 15-Lipoxygenase-1 (15-LOX-1) is a member of the lipoxygenas...
Recombinant therapeutic protease production by Bacillus sp.
Korkmaz, Nuriye; Çalık, Pınar; Department of Chemical Engineering (2007)
The first aim of this study is the development of extracellular recombinant therapeutic protease streptokinase producing Bacillus sp., and the second aim is to determine fermentation characteristics for streptokinase production. In this context, the signal (pre-) DNA sequence of B.licheniformis (DSM1969) extracellular serine alkaline protease enzyme gene (subC: Acc. No. X03341) was ligated to 5’ end of the streptokinase gene (skc: Acc. No. S46536) by SOE (Gene Splicing by Overlap Extension) method through P...
Citation Formats
D. Demetçi, “Preparation and evaluation of polymer based microcarriers for hydrophobic anti-cancer drugs,” M.S. - Master of Science, Middle East Technical University, 2007.