Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An investigation of accuracy of inertial interaction analyses with frequency-independent impedance coefficients
Download
index.pdf
Date
2007
Author
Yılmazok, Özgün
Metadata
Show full item record
Item Usage Stats
299
views
55
downloads
Cite This
The inertial interaction between the soil and structure alters dynamic response characteristics of a structure due to foundation deformability, such that the flexibility and energy dissipation capability of surrounding soil may lead to a significant increase in period and damping of structural oscillations. The inertial interaction analyses can be accomplished through utilisation of frequency dependent foundation impedance coefficients that are reported in literature for various soil conditions and foundation types. However, such analyses should be performed in frequency domain, and applicable to only cases that linear structural response is considered. Alternatively, equivalent frequencyindependent foundation impedance coefficients can be employed, such that a constant excitation frequency is assumed in calculation of these coefficients. In this study, it is assumed that the fundamental frequency of a fixed-base structure, which can be obtained through employing available empirical relationships or a modal analysis, can be substituted for excitation terms in impedance expressions. The error induced in calculation of peak structural distortions is investigated through comparisons of structural response due to frequency-dependent and frequency-independent foundation impedance coefficients. For analyses, a linear single-degree of freedom oscillator is considered for modeling the structure. The frequency-dependent impedance of a rigid disk foundation resting on elastic halfspace is simulated by a limited number of discrete elements. The response calculations are performed in frequency domain, through employing 72 acceleration records. It is concluded that, the natural frequency of fixed-base building can be considered as effective excitation frequency for calculation of foundation impedance coefficients, when the effect of inertial interaction on structural response is moderate. Through employing equivalent-linear approximation for the structural response, it is shown that the conclusion is also valid in cases that nonlinear structural response is considered. However, when the inertial interaction has more profound effects on the structural response, the use of natural frequency of flexible-base structure, which is calculated iteratively due to its dependence on foundation-impedance factors is recommended.
Subject Keywords
Structural Engineering (General).
URI
http://etd.lib.metu.edu.tr/upload/12609030/index.pdf
https://hdl.handle.net/11511/17417
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
A numerical procedure for the nonlinear analysis of reinforced concrete frames with infill walls
Güney, Murat Efe; Polat, Mustafa Uğur; Department of Civil Engineering (2005)
Materially non-linear analysis of reinforced concrete frame structures with infill walls requires appropriate mathematical models to be adopted for the beams and the columns as well as the infill walls. This study presents a mathematical model for frame elements based on a 3D Hermitian beam/column finite element and an equivalent strut model for the infill walls. The spread-of-plasticity approach is employed to model the material nonlinearity of the frame elements. The cross-section of the frame element is ...
Development of a physical theory model for the simulation of hysteretic behavior of steel braces
Çalık, Ertuğrul Emre; Dicleli, Murat; Department of Engineering Sciences (2007)
Bracing members are considered to be effective earthquake-resistant elements as they improve the lateral strength and stiffness of the structural system and contribute to seismic energy dissipation by deforming inelastically during severe earthquake motions. However, the cyclic behavior of such bracing members is quite complex because it is influenced by both buckling and yielding. This thesis presents simple but an efficient analytical model that can be used to simulate the inelastic cyclic behavior of ste...
An investigation of the inertial interaction of building structures on shallow foundations with simplified soil-structure interaction analysis methods
Eyce, Bora; Bakır, Bahadır Sadık; Department of Civil Engineering (2009)
Seismic response of a structure is influenced by the inertial interaction between structure and deformable medium, on which the structure rests, due to flexibility and energy dissipation capability of the surrounding soil. The inertial interaction analyses can be performed by utilizing simplified soil-structure interaction (SSI) analyses methods. In literature, it is noted that varying soil conditions and foundation types can be modeled by using these SSI approaches with springdashpot couples having certain...
The theorems of structural variation for rectangular finite elements for plate flexure
Saka, MP (Elsevier BV, 2005-11-01)
The theorems of structural variation predict the forces and displacements throughout a structure without the need of fresh analysis when the physical properties of one or more members are altered or even its topology is changed due to removal of one or more of its elements. It has been shown that a single linear elastic analysis of a parent structure under the applied loads and a set of unit-loading cases is sufficient to determine the elastic, non-linear elastic and even elasticplastic response of number o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Yılmazok, “An investigation of accuracy of inertial interaction analyses with frequency-independent impedance coefficients,” M.S. - Master of Science, Middle East Technical University, 2007.