Students’ strategies, episodes and metacognitions in the context of pisa 2003 mathematical literacy items

Okur, Serkan
The purpose of this study was to investigate the problem solving strategies, problem solving episodes, and metacognition of five Turkish students just graduated from elementary school and explore the interplay of these factors on their problem solving success in mathematics. The research data had been collected by clinical interviews and a self monitoring questionnaire followed by the interviews. Ten mathematical problems that participant students had worked on were selected among the released mathematical literacy items used in Programme for International Student Assessment (PISA) 2003. The problem solving strategies used by participants were coded according to the descriptions given by Posamentier & Krulik (1999). The cognitive-metacognitive problem solving framework developed by Artzt and Armour-Thomas (1992) has been used to observe the problem solving episodes of the participants. The coding system developed by Pappas et al. (2003) has been utilized to examine the major components of metacognition (mistake recognition, adaptability, awareness and expression of thought) of the participants. The self-monitoring questionnaire responses were analyzed to crosscheck the results obtained from the clinical interviews. The problem solving behaviors of the participants observed in the study confirmed their academic success levels. The study confirmed that the problem solving success is too complex to be clarified by a unique property or a behavior of the problem solver. The problem solving requires overcoming various obstacles to reach a successful result. Hence, not only the students should have the required mathematical knowledge and a good repertoire of different problem solving strategies, but also they should know when and how to use those strategies, and also they could monitor and regulate their problem solving processes using their metacognitive skills. So mathematics teachers should provide problems that require different problem solving strategies and encourage the students to explore new strategies, to take risks in trying and to discuss failures and successes with peers and teacher.
Citation Formats
S. Okur, “Students’ strategies, episodes and metacognitions in the context of pisa 2003 mathematical literacy items,” M.S. - Master of Science, Middle East Technical University, 2008.