Some properties and conserved quantities of the short pulse equation

Erbaş, Kadir Can
Short Pulse equation derived by Schafer and Wayne is a nonlinear partial differential equation that describes ultra short laser propagation in a dispersive optical medium such as optical fibers. Some properties of this equation e.g. traveling wave solution and its soliton structure and some of its conserved quantities were investigated. Conserved quantities were obtained by mass conservation law, lax pair method and transformation between Sine-Gordon and short pulse equation. As a result, loop soliton characteristic and six conserved quantities were found.


Exact solutions for vibrational levels of the Morse potential
Taşeli, Hasan (IOP Publishing, 1998-01-16)
The vibrational levels of diatomic molecules via Morse potentials are studied by means of the system confined in a spherical box of radius l, II is shown that there exists a critical radius l(cr),, at which the spectrum of the usual unbounded system can be calculated to any desired accuracy. The results are compared with those of Morse's classical solution which is based on the assumption that the domain of the internuclear distance r includes the unphysical region (-infinity, 0). By determining numerically...
Design and analysis of ultrashort femtosecond laser amplifiers
Doğan, Ersin; Bilikmen, Kadri Sinan; Department of Physics (2006)
This thesis presents a compact femtosecond laser amplifier design for optical preamplifiers and power amplifiers consist of theoretical perspective, simulations to analyze and optimize beam performance. The propagation through optical media is simulated for every optical component such as mirrors and nonlinear crystal separately and suggested realignment of these components required increasing amplifier performance. Finally Gaussian beam propagation and aberration compensation has been conducted.
Design of reflective and antireflective coatings for space applications
Eroğlu, Hüseyin Cüneyt; Esendemir, Akif; Department of Physics (2009)
In order to improve the efficiency of various optical surfaces, optical coatings are used. Optical coating is a process of depositing a thin layer of a material on an optical component such as mirror or lens to change reflectance or transmittance. There are two main types of coatings namely; reflective and antireflective (AR) Coatings. Reflective and antireflective coatings have long been developed for a variety of applications in all aspects of use; for optical and electro-optical systems in telecommunicat...
Two approximation schemes to the bound states of the Dirac-Hulthen problem
IKHDAİR, SAMEER; Sever, Ramazan (IOP Publishing, 2011-09-02)
The bound-state (energy spectrum and two-spinor wavefunctions) solutions of the Dirac equation with the Hulthen potential for all angular momenta based on the spin and pseudospin symmetry are obtained. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations. The orbital dependence (spin-orbit-and pseudospin-orbit-dependent coupling too singular 1/r(2)) of the Dirac equation are included to the solution by introducing a more accurate approximation scheme to deal with the cent...
Development of compact terahertz time-domain terahertz spectrometer using electro-optic detection method
Metbulut, Mukaddes Meliz; Altan, Hakan; Department of Physics (2009)
The goal of this thesis is to describe development of compact terahertz time-domain spectrometer driven by a mode-locked Ti:Sapphire laser. The terahertz radiation was generated by photoconductive antenna method and detected by electro-optic detection method. In this thesis, several terahertz generation and detection method, working principle of terahertz time-domain spectroscopy and its applications are discussed. We mainly focused on working principle of terahertz time-domain spectroscopy and characteriza...
Citation Formats
K. C. Erbaş, “Some properties and conserved quantities of the short pulse equation,” M.S. - Master of Science, Middle East Technical University, 2008.