Computer simulation of a complete biological treatment plant

Topkaya , Pınar
Nitrogen and phosphorus removal is often required before discharge of treated wastewater to sensitive water bodies. Kayseri Wastewater Treatment Plant (KWWTP) is a biological wastewater treatment plant that includes nitrogen and phosphorus removal along with carbon removal. The KWWTP receives both municipal wastewater and industrial wastewaters. In this study, KWWTP was modeled by using a software called GPS-X, which is developed for modeling municipal and industrial wastewaters. The Activated Sludge Model No.2d (ASM2d) developed by the International Association on Water Quality (IAWQ) was used for the simulation of the treatment plant. In this model, carbon oxidation, nitrification, denitrification and biological phosphorus removal are simulated at the same time. During the calibration of the model, initially, sensitivities of the model parameters were analyzed. After sensitivity analysis, dynamic parameter estimation (DPE) was carried out for the optimization of the sensitive parameters. Real plant data obtained from KWWTP were used for DPE. The calibrated model was validated by using different sets of data taken from various seasons after necessary temperature adjustments made on the model. Considerably good fits were obtained for removal of chemical oxygen demand (COD), total suspended solids (TSS) and nitrogen related compounds. However, the results for phosphorus removal were not satisfactory, probably due to lack of information on volatile fatty acids concentration and alkalinity of the influent wastewater.


Investigation of thin semiconductor coatings and their antimicrobial properties
Erkan, Arcan; Karakaş, Gürkan; Department of Chemical Engineering (2005)
Regular disinfection of surfaces is required in order to reduce the number of microorganisms, unable to transmit infections and maintaining the surfaces sterilized. For this purpose, antimicrobial thin film coatings on the various surfaces such as glass and ceramic surfaces, capable of killing harmful microorganisms are being investigated. Generally a semiconducting material which can be activated by UV light tends to exhibit a strong antimicrobial activity. With holes (h+) and hydroxyl radicals (OH*) gener...
Dynamic modeling of environmental risk associated with drilling discharges to marine sediments
Durgut, İsmail; Reed, Mark; Smit, Mathijs G.D.; Ditlevsen, May Kristin (Elsevier BV, 2015-10)
Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order...
Experimental Study on Maize Cob Trickling Filter-Based Wastewater Treatment System: Design, Development, and Performance Evaluation
Ali, Imran; Khan, Zahid M.; Sultan, Muhammad; Mahmood, Muhammad H.; Farid, Hafiz U.; Ali, Mohsin; Nasir, Abdul (HARD Publishing Company, 2016-01-01)
In developing countries, good-quality water is contaminated due to the disposal of untreated municipal and industrial wastewater (WW) into natural water reservoirs. Most of the wastewater is not treated properly according to international standards, and usually is disposed of and/or utilized for irrigation without appropriate treatment. The main hurdles in providing wastewater treatment (WWT) in developing countries include high costs, and the poor design, installation, and operation of conventional WWT sys...
A model for optimal operation of land-treatment sites for oily wastes
Ünlü, Kahraman (SAGE Publications, 2001-06-01)
Land treatment as a disposal technology has been extensively used for the disposal of oily wastes. Effective management of land treatment sites require optimal operation of the system in order to achieve the fastest and most complete degradation of petroleum hydrocarbons without contamination of the environment. This paper describes a model that can be used for optimising the operation of land treatment sites for oily wastes. The model is composed of system simulator and optimisation submodels. Conceptually...
Whole-cell fluorescent bacterial bioreporter for arsenic detection in water
Elcin, E.; Oktem, H. A. (Springer Science and Business Media LLC, 2019-10-01)
Microbial whole-cell bioreporters have been developed for environmental monitoring of arsenic contamination. Despite the great interest in bacterial bioreporters for arsenite detection, relatively few studies reported their response to arsenate levels. In this study, green fluorescent protein-based whole-cell Escherichia coli bioreporter was constructed for the measurement of both bioavailable arsenite and arsenate in water. The developed bacterial bioreporter has much higher sensitivity toward arsenate in ...
Citation Formats
P. Topkaya, “Computer simulation of a complete biological treatment plant,” M.S. - Master of Science, Middle East Technical University, 2008.