Control of a mobile robot swarm via informed robots

Çelikkanat, Hande
In this thesis, we study how and to what extent a self-organized mobile robot flock can be guided by informing some of the robots within the flock about a preferred direction of motion. Specifically, we extend a flocking behavior that was shown to maneuver a swarm of mobile robots as a cohesive group in free space, avoiding obstacles. In its original form, this behavior does not have a preferred direction and the flock would wander aimlessly. In this study, we incorporate a preference for a goal direction in some of the robots. These informed robots do not signal that they are informed (a.k.a. unacknowledged leadership) and instead guide the swarm by their tendency to move in the desired direction. Through experimental results with physical and simulated robots we show that the self-organized flocking of a robot swarm can be effectively guided by an informed minority of the flock. We evaluate the system using a number of quantitative metrics: First, we propose to use the mutual information metric from Information Theory as a dynamical measure of the information exchange. Then, we discuss the accuracy metric from directional statistics and size of the largest cluster as the measures of system performance. Using these metrics, we perform analyses from two points of views: In the transient analyses, we demonstrate the information exchange between the robots as the time advances, and the increase in the accuracy of the flock when the conditions are suitable for an adequate amount of information exchange. In the steady state analyses, we investigate the interdependent effects of the size of the flock in terms of the robots in it, the ratio of informed robots in the flock over the total flock size, the weight of the direction preference behavior, and the noise in the system.


Face detection in active robot vision
Önder, Murat; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2004)
The main task in this thesis is to design a robot vision system with face detection and tracking capability. Hence there are two main works in the thesis: Firstly, the detection of the face on an image that is taken from the camera on the robot must be achieved. Hence this is a serious real time image processing task and time constraints are very important because of this reason. A processing rate of 1 frame/second is tried to be achieved and hence a fast face detection algorithm had to be used. The Eigenfa...
Vision-based robot localization using artificial and natural landmarks
Arıcan, Zafer; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2004)
In mobile robot applications, it is an important issue for a robot to know where it is. Accurate localization becomes crucial for navigation and map building applications because both route to follow and positions of the objects to be inserted into the map highly depend on the position of the robot in the environment. For localization, the robot uses the measurements that it takes by various devices such as laser rangefinders, sonars, odometry devices and vision. Generally these devices give the distances o...
Direct perception of traversibility affordance on range images through learning on a mobile robot
Uğur, Emre; Şahin, Erol; Department of Computer Engineering (2006)
In this thesis, we studied how physical affordances of the environment, such as traversibility for a mobile robot, can be learned. In particular, we studied how the physical properties of the environment, as acquired from range images obtained from a 3D laser scanner mounted on a mobile robot platform, can specify the traversibility affordance. A physics based simulation environment is used during exploration trials, where the traversibility affordances and the relevant features for each behavior are learne...
Swarm robotics: From sources of inspiration to domains of application
Şahin, Erol (Springer Verlag; 2005-09-01)
Swarm robotics is a novel approach to the coordination of large numbers of relatively simple robots which takes its inspiration from social insects. This paper proposes a definition to this newly emerging approach by 1) describing the desirable properties of swarm robotic systems, as observed in the system-level functioning of social insects, 2) proposing a definition for the term swarm robotics, and putting forward a set of criteria that can be used to distinguish swarm robotics research from other multi-r...
Online mining of human deep intention by proactive environment changes using deep neural networks
Er, Nur Baki; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2015)
This thesis focuses on surfacing human deep intention, which is known or assumed, in a smart environment that consists of autonomous robotic systems which can interact with the human. Deep intentions are defined as kind of actions that humans would like to behave but pushed deeper in the stack of the intentions in a daily life. The purpose of the designed system is to observe the human in the smart room for a while and to analyze human’s behaviors to offer the optimal set of system behavior to surface a des...
Citation Formats
H. Çelikkanat, “Control of a mobile robot swarm via informed robots,” M.S. - Master of Science, Middle East Technical University, 2008.