Single and multicomponent ion exchange of silver, zinc and copper on zeolite 4a

Ay, Hale
Ion exchange of heavy metals with zeolites is important in terms of different application areas. Industrial wastewater treatment and antibacterial applications are two essential areas that have taken great attention. While silver, zinc and copper are well known for their toxicity, they are also used as antibacterial agents in zeolites. The objective of this study is to investigate the single and multicomponent ion exchange behavior of zeolite 4A for silver, zinc, copper and sodium ions. For this purpose Ag+-Na+, Zn2+-Na+, Cu2+-Na+ binary systems and Ag+-Zn2+-Na+, Ag+-Cu2+-Na+, Cu2+-Zn2+-Na+ ternary systems were investigated in batch systems at 25°C and 0.1 N. Binary ion exchange isotherms indicate that zeolite 4A has high selectivity for silver, zinc and copper with respect to sodium. All exchange isotherms lie above the diagonal over the whole range. Using the equilibrium data, the thermodynamic analysis of the binary systems were carried out. The thermodynamic equilibrium constants and the standard free energies of exchange were calculated as 340.9 and -14.5 kJ/mol for silver-sodium system, 40.5 and -4.6 kJ/mol for zinc-sodium system, and 161.2 and -6.3 kJ/mol for copper-sodium system, respectively. From these values, selectivity sequence of zeolite 4A was determined as Ag+ > Cu2+ > Zn2+. This selectivity sequence was also verified by the results of ternary ion exchange experiments. The experimental data were compared with the Langmuir and Freundlich isotherms. While Freundlich model gives a better correlation for Ag+-Na+ and Zn2+-Na+ exchange, Langmuir model represents a better fit to the experimental data of Cu2+-Na+ exchange.


Proquinoidal-Conjugated Polymer as an Effective Strategy for the Enhancement of Electrical Conductivity and Thermoelectric Properties
Tam, Teck Lip Dexter; Ng, Chee Koon; Lim, Siew Lay; Yıldırım, Erol; Ko, Jieun; Leong, Wei Lin; Yang, Shuo-Wang; Xu, Jianwei (American Chemical Society (ACS), 2019-10-22)
P-doping of conjugated polymers requires electron transfer from the conjugated polymer to the p-dopant. This implies that the highest occupied molecular orbital (HOMO) of the conjugated polymer has to be higher than the lowest unoccupied molecular orbital (LUMO) of the p-dopant. Although commonly used p-dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) have a low LUMO of -5.24 eV, most conjugated polymers used in high-performance field-effect transistors are donor- acceptor-type ...
Impact modified polystyrene based nanocomposites
Yeniova, Canan Esma; Yılmazer, Ülkü; Department of Chemical Engineering (2009)
Polystyrene, PS, is a preferable polymer in industry, but, its brittle characteristic restricts its utilization. The aim of this study is to improve the impact strength of PS by the help of elastomeric materials SEBS-g-MA and E-BA-GMA. In order to prevent the reduction in the tensile strength of the materials, three different types of organic montmorillonites, MMT, (Cloisite® 30B, 25A and 15A) were used as fillers. Nanocomposite preparation was performed in a co-rotating twin screw extruder. Initially elast...
The synthesis of titanium dioxide photocatalysts by sol-gel method: the effect of hydrothermal treatment conditions and use of carbon nanotube template
Yürüm, Alp; Karakaş, Gürkan; Department of Chemical Engineering (2009)
Titanium dioxide (TiO2), a semiconductor, has been used in many areas like heterogeneous photocatalysis. In the present study, the effect of hydrothermal treatment conditions and the use of carbon nanotubes on the photocatalytic activity of sol-gel synthesized titanium dioxide were examined. The anatase particles were transformed into layered trititanate particles with either nanotube or nanoplate structure by hydrothermal treatment under the alkaline conditions. Post hydrothermal treatment under neutral co...
Syntheses of self-supported tubular zeolite a membranes
Gücüyener, Canan; Kalıpçılar, Halil; Department of Chemical Engineering (2008)
Zeolites are microporous hydrated aluminosilicate crystals containing alkali and/or alkali earth metal cations in their frameworks. Due to their molecular size pores, they can separate molecules according to their size and shape. Zeolites are mostly used in ion exchange, adsorption processes and catalytic applications. The hydrophilic/hydrophobic character of zeolites also makes them favorable materials for adsorption based separations. Recently the potential of zeolite/ceramic composite membranes have been...
GUDEN, M; Karakaya, İshak (Springer Science and Business Media LLC, 1994-08-01)
High energy consumption in the production of magnesium by molten salt electrolysis is mainly due to the recombination of magnesium and chlorine. The large interelectrode distance used, in conventional techniques, to reduce the extent of 'back reaction', results in a significant potential drop. A laboratory cell that enables the operation with smaller interelectrode distance and easy separation of electrode products has been used to study electrolytic magnesium production. The cell features a top inserted gr...
Citation Formats
H. Ay, “Single and multicomponent ion exchange of silver, zinc and copper on zeolite 4a,” M.S. - Master of Science, Middle East Technical University, 2008.