Design of an educational purpose multifunctional dc/dc converter board

Download
2008
Bağlan, Fuat Onur
In this thesis a multifunctional DC/DC converter board will be developed for utilization as an educational experiment set in the switched-mode power conversion laboratory of power electronic courses. The board has a generic power-pole structure allowing for easy configuration of various power converter topologies and includes buck, boost, buck-boost, flyback, and forward converter topologies. All the converters can be operated in the open-loop control mode with a switching frequency range of 30-100 kHz and a maximum output power of 20 W. Also the buck converter can be operated in voltage mode control and the buck-boost converter can be operated in peak-current-mode control for the purpose of demonstrating the closed loop control performance of DC/DC converters. The designed board allows for experimentation on the DC/DC converters to observe the macroscopic (steadystate/ dynamic, PWM cycle and low frequency) and microscopic (switching dynamic) behavior of the converters. In the experiments both such characteristics can be clearly observed such that students at basic learning level (involving only the macroscopic behavior), and students at advanced learning level (additionally involving the parasitic effects) can benefit from the experiments. The thesis reviews the switch mode conversion principles, gives the board design and proceeds with the experiments illustrating the capabilities of the experimental system.

Suggestions

Design and implementation of a current source converter based active power filter for medium voltage applications
Terciyanlı, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2010)
This research work is devoted to the design, development and implementation of a Current Source Converter (CSC) based Active Power Filter (APF) for Medium Voltage (MV) applications. A new approach has been proposed to the design of the CSC based APF for reducing the converter kVA rating considerably. This design approach is called the Selective Harmonic Amplification Method (SHAM), and is based on the amplification of some selected harmoniccurrent components of the CSC by the input filter, and the CSC contr...
Design, implementation, and control of a twostage ac/dc isolated power supply with high input power factor and high efficiency
Kaya, Mehmet Can; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2008)
In this thesis a two-stage AC/DC/DC power converter is designed and implemented. The AC/DC input stage of the converter consists of the twophase interleaved boost topology employing the average current mode control principle. The output stage consists of a zero voltage switching phase shifted full bridge (ZVSPSFB) DC/DC converter. For the input stage, main design goals are obtaining high input power factor, low input current distortion, and well regulated output dc voltage, and obtaining these attributes in...
HMIC miniaturization techniques and application on an FMCW range sensor transceiver
Korkmaz, Hakan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2010)
This thesis includes the study of hybrid microwave integrated circuits (HMIC), miniaturization techniques applied on HMICs and its application on a frequency modulated continuous wave (FMCW) range sensor transceiver. In the scope of study, hybrid and monolithic microwave integrated circuits (HMIC and MMIC) are introduced, advantages and disadvantages of these two types are discussed. Large size of HMICs is the main disadvantage especially for military and civil applications requiring miniature volumes. This...
High performance readout and control electronics for mems gyroscopes
Şahin, Emre; Akın, Tayfun; Department of Electrical and Electronics Engineering (2009)
This thesis reports the development of various high performance readout and control electronics for implementing angular rate sensing systems using MEMS gyroscopes developed at METU. First, three systems with open loop sensing mechanisms are implemented, where each system has a different drive-mode automatic gain controlled (AGC) self-oscillation loop approach, including (i) square wave driving signal with DC off-set named as OLS_SquD, (ii) sinusoidal driving signal with DC off-set named as OLS_SineD, and i...
Development of mems technology based microwave and millimeter-wave components
Çetintepe, Çağrı; Demir, Şimşek; Department of Electrical and Electronics Engineering (2010)
This thesis presents development of microwave lumped elements for a specific surface-micromachining based technology, a self-contained mechanical characterization of fixed-fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for millimeter-wave applications. Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements developed in this thesis are tailored for a surface-micromachining technology incorporating a single metallization layer, which allows an easy ...
Citation Formats
F. O. Bağlan, “Design of an educational purpose multifunctional dc/dc converter board,” M.S. - Master of Science, Middle East Technical University, 2008.