Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Design and implementation of a current source converter based active power filter for medium voltage applications
Download
index.pdf
Date
2010
Author
Terciyanlı, Alper
Metadata
Show full item record
Item Usage Stats
2
views
4
downloads
This research work is devoted to the design, development and implementation of a Current Source Converter (CSC) based Active Power Filter (APF) for Medium Voltage (MV) applications. A new approach has been proposed to the design of the CSC based APF for reducing the converter kVA rating considerably. This design approach is called the Selective Harmonic Amplification Method (SHAM), and is based on the amplification of some selected harmoniccurrent components of the CSC by the input filter, and the CSC control system, which is specifically designed for this purpose. The proposed SHAM has been implemented on the first industrial CSC based APF for the elimination of 11th and 13th current harmonics of 12-pulse rectifiers fed from Medium Voltage (MV) underground cables in order to comply with IEEE Std. 519-1992. 450 kVA rated APF with only 205 kVA CSC rating has been connected to the MV bus via a coupling transformer of 600kVA, 34.5/1.1 kV. The power stage of the CSC based APF is composed of water-cooled high voltage IGBT and diode modules. Reference currents to be generated by the CSC are obtained by the use of a selective harmonic extraction method, by mploying synchronously rotating reference frames for each selected harmonic component. An Active damping method is also used to suppress the oscillations around the natural frequency of the input filter, excluding the harmonic components to be eliminated by APF. Simulation and field test results have shown that SHAM can successfully be applied to a CSC based APF for reduction of converter kVA rating, thus making it a cost- competitive alternative to voltage source converter based APFs traditionally used in industry applications.
Subject Keywords
Electrical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12611767/index.pdf
https://hdl.handle.net/11511/19459
Collections
Graduate School of Natural and Applied Sciences, Thesis