Finite element study on local buckling and energy dissipation of seismic bracing

Download
2008
Kuşyılmaz, Ahmet
Seismic provisions for steel buildings present limiting width-thickness and slenderness ratios for bracing members. Most of these limits were established based on experimental observations. The number of experimental studies is limited due to the costs associated with them. With the rapid increase in computing power; however, it is now possible to conduct finite element simulation of brace components using personal computers. A finite element study has been undertaken to evaluate the aforementioned limits for pin-ended pipe section steel braces. Fifty four tubular pipe brace models possessing different diameter-to-thickness ratios varying from 5 to 30 and slenderness ratios varying from 40 to 200 were analyzed. The effect of cyclic hardening modulus on the response of braces was explored. In all analysis, the models were subjected to reversed cyclic displacements up to ten times the yield displacement. Local buckling was traced during the loading history using a criterion based on local strains. Results are presented in terms of the ductility level attained by the member at the onset of local buckling. It is shown that local buckling of the section is influenced by the diameter-to-thickness and the slenderness ratios of the member. Moreover, the amount of hardening modulus was found to affect the local buckling response significantly. The need to include this material property into seismic provisions is demonstrated. Finally, the hysteretic energy dissipated by the member was quantified for each displacement excursion.

Suggestions

A numerical study on local buckling and energy dissipation of CHS seismic bracing
Kusyilmaz, Ahmet; Topkaya, Cem (Elsevier BV, 2011-08-01)
Seismic provisions for steel buildings present limiting width-thickness and slenderness ratios for bracing members, most of which were established based on experimental observations. A finite element study has been undertaken to evaluate these limits for pin-ended circular hollow section (CHS) steel braces. Uncertainties in modeling and quantification arise in the simulation of cyclic brace buckling. A finite element modeling procedure was developed and calibrated using existing experimental data. Sensitivi...
A numerical study on response factors for steel wall-frame systems
Arslan, Hakan; Topkaya, Cem; Department of Civil Engineering (2009)
A numerical study has been undertaken to evaluate the response of dual systems which consist of steel plate shear walls and moment resisting frames. The primary objective of the study was to investigate the influence of elastic base shear distribution between the wall and the frame on the global system response. A total of 10 walls and 30 wall-frame systems, ranging from 3 to 15 stories, were selected for numerical assessment. These systems represent cases in which the elastic base shear resisted by the fra...
Stabilization of expansive soils using waste marble dust
Başer, Onur; Çokça, Erdal; Department of Civil Engineering (2009)
Expansive soils occurring in arid and semi-arid climate regions of the world cause serious problems on civil engineering structures. Such soils swell when given an access to water and shrink when they dry out. Several attempts are being made to control the swell-shrink behavior of these soils. Soil stabilization using chemical admixtures is the oldest and most widespread method of ground improvement. In this study, waste limestone dust and waste dolomitic marble dust, by-products of marble industry, were us...
Analytical investigation of aashto lrfd response modification factors and seismic performance levels of circular bridge columns
Erdem, Arda; Caner, Alp; Department of Civil Engineering (2010)
Current seismic design approach of bridge structures can be categorized into two distinctive methods: (i) force based and (ii) performance based. AASHTO LRFD seismic design specification is a typical example of force based design approach especially used in Turkey. Three different importance categories are presented as “Critical Bridges”, “Essential Bridges” and “Other Bridges” in AASHTO LRFD. These classifications are mainly based on the serviceability requirement of bridges after a design earthquake. The ...
Analysis of mechanical behavior of high performance cement based composite slabs under impact loading
Satıoğlu, Azize Ceren; Gülkan, Polat; Department of Civil Engineering (2009)
Studies on the behavior of steel fiber reinforced concrete (SFRC) and slurry infiltrated fibrous concrete (SIFCON) to impact loading have started in recent years. Using these relatively new materials, higher values of tensile and compressive strength can be obtained with greater fracture toughness and energy absorption capacity, and therefore they carry a considerable importance in the design of protective structures. In this thesis, computational analyses concerning impact loading effect on concrete, steel...
Citation Formats
A. Kuşyılmaz, “Finite element study on local buckling and energy dissipation of seismic bracing,” M.S. - Master of Science, Middle East Technical University, 2008.