Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A numerical study on local buckling and energy dissipation of CHS seismic bracing
Date
2011-08-01
Author
Kusyilmaz, Ahmet
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
Seismic provisions for steel buildings present limiting width-thickness and slenderness ratios for bracing members, most of which were established based on experimental observations. A finite element study has been undertaken to evaluate these limits for pin-ended circular hollow section (CHS) steel braces. Uncertainties in modeling and quantification arise in the simulation of cyclic brace buckling. A finite element modeling procedure was developed and calibrated using existing experimental data. Sensitivity of the finite element analysis results to the uncertainties in modeling and quantification methods were studied in detail. A parametric study was conducted utilizing the calibrated modeling technique. Fifty four CHS brace models possessing different diameter-to-thickness ratios varying from 5 to 30 and slenderness ratios varying from 40 to 200 were analyzed. The effect of cyclic hardening modulus on the response of braces was explored. In all analysis, the models were subjected to reversed cyclic displacements up to ten times the yield displacement. In this paper, the results are presented in terms of the ductility level attained by the member at the onset of local buckling. It is shown that local buckling of the section is not only a function of the diameter-to-thickness ratio but is also influenced by the slenderness ratio of the member. Moreover, the amount of hardening modulus was found to affect the local buckling response significantly. The need to include this material property into seismic provisions is demonstrated. Finally, the hysteretic energy dissipated by the member was quantified for each displacement excursion.
Subject Keywords
Mechanical Engineering
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/36401
Journal
THIN-WALLED STRUCTURES
DOI
https://doi.org/10.1016/j.tws.2011.03.006
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
A comparative study on different analysis approaches for estimating the axial loads on columns and structural walls at tall buildings
Kurç, Özgür (Wiley, 2013-04-01)
Estimating axial loads on columns and structural walls at tall buildings is a complicated task because time-dependent deformations of concrete and the way the building is constructed affect the way the gravity loads are carried by them. The accurate computation of axial loads is crucial for determining the size and strengths of columns and structural walls. This study investigates several analysis approaches commonly used during the design of such buildings. Construction sequences, time-dependent deformatio...
A simplified non-linear procedure for buildings with shear walls
TEKELİ, Hamide; Atimtay, Ergin (Thomas Telford Ltd., 2015-01-01)
A simple and easily applicable analytical method is proposed to obtain the capacity curve of buildings with shear walls as the first stage of a seismic pushover analysis. The method is based on controlling the curvature distribution of shear walls. Accuracy of the method was examined based on data of three sample buildings compiled from the literature. The buildings have different floor areas, number of storeys and cross-sectional areas of shear walls. The method can be economically used with respect to bot...
An approximate procedure for estimating the member demands in mid-rise reinforced concrete buildings
Akpinar, Ugur; Binici, Barış; Yakut, Ahmet; Tuncay, Kağan (Springer Science and Business Media LLC, 2020-01-01)
Seismic assessment of mid-rise reinforced concrete buildings is important for urban seismic risk reduction. Nonlinear time history analysis is the state-of-the-art analysis tool for this purpose. However, the number of such buildings may reach to several tens of thousands in metropolitan cities of earthquake prone countries. This necessitates faster yet sufficiently accurate assessment methods to mitigate the seismic risk. In this study, a simple and efficient approach is developed and validated for the ass...
Finite element study on local buckling and energy dissipation of seismic bracing
Kuşyılmaz, Ahmet; Topkaya, Cem; Department of Civil Engineering (2008)
Seismic provisions for steel buildings present limiting width-thickness and slenderness ratios for bracing members. Most of these limits were established based on experimental observations. The number of experimental studies is limited due to the costs associated with them. With the rapid increase in computing power; however, it is now possible to conduct finite element simulation of brace components using personal computers. A finite element study has been undertaken to evaluate the aforementioned limits f...
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Kusyilmaz and C. Topkaya, “A numerical study on local buckling and energy dissipation of CHS seismic bracing,”
THIN-WALLED STRUCTURES
, pp. 984–996, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36401.