Investigations on bulk glass forming ability of titanium based multicomponent alloys

Süer, Sıla
The aim of this study is to investigate the bulk glass forming ability (BGFA) of Ti-based alloy systems. These investigations were carried out in two main parts that are complementary to each other: theoretical and experimental. For theoretical studies, which are based on electronic theory of alloys in pseudopotential approximation, Ti-Zr, Ti-Co and Ti-Cu alloys were chosen as the binary systems. Alloying element additions were performed to each binary for the investigation of the BGFA of multicomponent Ti-based alloys. Among the three studied binary systems, Ti-Cu was found to exhibit better BGFA, and Mn, Al and Ni elements were found to be suitable for improving the BGFA of Ti-Cu binary alloy system. BGFA of Ti-Cu binary and Ti-Cu-(Mn, Al, Ni) multicomponent alloys were investigated with the experimental studies that were carried out with performing arc melting and centrifugal casting operations. The characterizations of these alloys were done with scanning electron microscopy, X-ray diffraction analysis and differential scanning calorimetry. Ti60Cu35Mn5, Ti60Cu35Al5 and Ti60Cu35Ni5 alloys were produced and characterized as examples for ternary systems. Among them, Ti60Cu35Mn5 system was found to have better indications regarding to BGFA. Therefore, it was chosen as the main composition and multicomponent alloys of Ti59Cu35Mn5Al1, Ti59Cu35Mn5Ni1 and Ti58Cu35Mn5Al1Ni1 were synthesized and characterized.
Citation Formats
S. Süer, “Investigations on bulk glass forming ability of titanium based multicomponent alloys,” M.S. - Master of Science, Middle East Technical University, 2008.