A comparative study on earthquake resistance of reinforced concrete and masonry residential buildings in small-scale cities of Turkey

Er Akan, Aslı
Today the vast majority of urban population in Turkey is living in multi-story apartment blocks constructed of reinforced concrete due to the fact that in the late 19th century concrete and steel took the place of traditional materials such as masonry. However, it cannot be denied that masonry is still a crucial material for load bearing walls, internal walls and cladding of buildings. In addition to this masonry construction system has many advantages. From the architectural point of view, it provides flexibility in plan, spatial composition, wide variety of colours and textures and an impressive appearance for external walls. From the construction point of view, masonry system eliminates the cost of the frame because the structure is also the enclosing wall. In spite of these advantages, until recently, masonry was not considered to be a convenient material for building construction in seismic zones of Turkey. Thus, in 1950’s for the residential building reinforced concrete started to be used as a construction material in every region of Turkey. This building material first became popular and was widely used but after a short while it was also used in smaller cities. Before the construction of reinforced concrete residential buildings each of these small-scale cities had their own local characteristics but after a rapid urbanization period all of these cities became similar to each other. Therefore, in this study firstly residential building typologies in some small-scale cities (Bolu, Düzce, Çankırı, Çorum, Kastamonu, Kırıkkale) are investigated and for these cities 4-storey masonry residential buildings is proposed instead of multi-story reinforced concrete apartment blocks. Here, it is aimed to enliven the use of masonry again in these regions. To achieve this aim it is necessary to verify the fact that it is possible to construct a four-story residential building with masonry bearing walls instead of reinforced concrete beam and column skeleton system keeping the existing plan scheme in other words without changing its architectural characteristics. In order to do this, 3D models are created to compare the behaviours of the masonry building and reinforced concrete building. The behavioural investigation of the two models is performed in the finite element platform with the help of SAP 2000. Finally it is certified that this proposal is successfully efficient.


A comparative structural and architectural analysis of earthquake resistant design principles applied in reinforced concrete residential buildings in Turkey
Özmen, Cengiz; Ünay, Ali İhsan; Department of Building Science in Architecture (2008)
The aim of this thesis is to demonstrate that it is possible to design earthquake resistant residential structures without significant compromises in the spatial quality and economic viability of the building. The specific type of structural system that this thesis focuses on is the reinforced concrete skeleton system. The parametric examples and key studies that are used in this research are chosen among applied projects in the city of Bolu. This city is chosen due to its location on the North Anatolian Fa...
Detailed evaluation of an existing reinforced concrete building damaged under its own weight
Bayraktar, Atilla; Yakut, Ahmet; Department of Civil Engineering (2011)
A significant part of the Turkey’s building inventory consists of reinforced concrete frame structures. In addition to that a big part of the existing building inventory in Turkey shows insufficiency in seismic performance damage or failure of structures under their own loads has also been observed. The failure of Zümrüt Apartment building that occurred in 2004 in Konya and resulted in the death of 92 people brings the necessity of researches on robustness and reserve capacities of the buildings under gravi...
Assessment of seismic fragility curves for low- and mid-rise reinforced concrete frame buildings using Duzce field database
Erberik, Murat Altuğ (2005-06-01)
This paper focuses on the generation of fragility curves for low-rise and mid-rise reinforced concrete frame buildings, which constitute approximately 75% of the total building stock in Turkey and which are generally occupied for residential purposes. These buildings, which suffered extensive damage after recent earthquakes, are not designed according to the current code regulations and the supervision in the construction phase is not adequate. Hence the buildings possess many deficiencies like irregulariti...
Multistage seismic assessment methods for existing reinforced concrete buildings and their applicability for retrofitting cost estimation
Doğan, Onur; Yücemen, Mehmet Semih; Koçyiğit, Ali; Department of Earthquake Studies (2013)
When the huge building stock in Turkey is considered, it is practically impossible to carry out detailed structural analyses for all of the buildings. In order to cope with the seismic safety evaluation of a large number of existing buildings, it is necessary to use simplified techniques, which can predict the seismic vulnerability of the existing buildings in a relatively short time. The comprehensive structural data compiled for the 48 different reinforced concrete buildings contain full information on th...
Comparative study of an RC chimney as per different codes
Bashir, Ishfaq; Canbay, Erdem; Department of Civil Engineering (2019)
Almost all the industrial reinforced Industrial concrete chimneys are tall and slender structures having circular cross-sections. Analysis and design of such structures require dynamic analysis for seismic loads, the pressure resulting from wind and for loads due to self- weight of the structure. Under a given lateral dynamic load, the exact geometry of a RC chimneys plays an important role in the structural behavior. Stiffness parameters of RC chimneys significantly depend on the geometric properties of th...
Citation Formats
A. Er Akan, “A comparative study on earthquake resistance of reinforced concrete and masonry residential buildings in small-scale cities of Turkey,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.