Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Analysis of regenerative cooling ın liquid propellant rocket engines
Download
index.pdf
Date
2008
Author
Boysan, Mustafa Emre
Metadata
Show full item record
Item Usage Stats
6
views
7
downloads
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/Kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio cooling channels and different number of cooling channels on gas-side wall and coolant temperature and pressure drop in cooling channel.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12610190/index.pdf
https://hdl.handle.net/11511/18308
Collections
Graduate School of Natural and Applied Sciences, Thesis