Active microwave remote sensing of soil moisture : a case study in Kurukavak Basin

Yılmaz, Musa
Soil moisture condition of a watershed plays a significant role in separation of rainfall into infiltration and surface runoff, and hence is a key parameter for the majority of physical hydrological models. Due to the large difference in dielectric constants of dry soil and water, microwave remote sensing and particularly the commonly available synthetic aperture radar is a potential tool for such studies. The main aim of this study is to produce the distributed soil moisture maps of a catchment from active microwave imagery. For this purpose, nine field trips are performed within a small basin in western Anatolia and point surface soil moisture values are collected with a Time Domain Reflectometer. The field studies are planned to match radar image acquisitions and accomplished over the water year of 2004 - 2005. In this context, first, the Dubois Model, a semi-empirical backscatter model is utilized in the reverse order to develop radar backscatter soil roughness relationship and soil roughness maps of the study area are obtained. Then another relationship is built between radar backscatter and the three governing surface parameters: local incidence angle, soil moisture and soil roughness, which is later used in the soil moisture estimation methods. Depending on land use and vegetation cover condition, surface soil moisture maps of the catchment are produced by Backscatter Correction Factors, Water Cloud Model and Basin Indexes methods. In the last part of the study, the soil moisture maps of the basin are input to a semi-distributed hydrological model, HEC-HMS, as the initial soil moisture condition of a flood event simulation. In order to investigate the contribution of distributed initial soil moisture data on model outputs, simulation of the same flood event is also performed with the lumped initial soil moisture condition. Finally, a comparison between both the distributed and lumped model simulation outputs and with the observed data is carried out.


An integrated seismic hazard framework for liquefaction triggering assessment of earthfill dams' foundation soils
Ünsal Oral, Sevinç; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Within the confines of this study, seismic soil liquefaction triggering potential of a dam foundation is assessed within an integrated probabilistic seismic hazard assessment framework. More specifically, the scheme presented hereby directly integrates effective stress-based seismic soil liquefaction triggering assessment with seismic hazard analysis framework, supported by an illustrative case. The proposed methodology successively, i) processes the discrete stages of probabilistic seismic hazard workflow ...
Physically based point snowmelt modeling and its distribution in euphrates basin
Şensoy, Aynur; Şorman, Ali Ünal; Department of Civil Engineering (2005)
Since snowmelt runoff is important in the mountainous parts of the world, substantial efforts have been made to develop snowmelt models with many different levels of complexity to simulate the processes at the ground, within the snow, and at the interface with the atmosphere. The land-atmosphere interactions and processing influencing heat transfer to and from a snowpack are largely variable and the conceptual representation of this temporal and spatial variability is difficult. A physically based, two laye...
Booster disinfection in water distribution networks
Sert, Çağlayan; Altan Sakarya, Ayşe Burcu; Department of Civil Engineering (2009)
Disinfection of the municipal water systems is mostly achieved by means of chlorine addition at water treatment plants known as sources. Thus, there should be an adequate chlorine concentration at the source for an effective disinfection throughout the system by considering upper and lower limits of disinfectant. However, since the disinfectants are reactive and decays through the system, chlorine added at the source may not be enough to maintain desired disinfectant residuals which may lead to water qualit...
Operational hydrological forecasting of snowmelt runoff by remote sensing and geographic information systems integration
Tekeli, Ahmet Emre; Şorman, Ali Ünal; Department of Civil Engineering (2005)
Snow indicates the potential stored water volume that is an important source of water supply, which has been the most valuable and indispensable natural resource throughout the history of the world. Euphrates and Tigris, having the biggest dams of Turkey, are the two largest trans-boundary rivers that originate in Turkey and pass throughout the water deficit nations Syria, Iran, Iraq and Saudi Arabia bringing life as well as water all their way. Snowmelt runoff originating from the mountains of Eastern Turk...
Stabilization of expansive soils using waste marble dust
Başer, Onur; Çokça, Erdal; Department of Civil Engineering (2009)
Expansive soils occurring in arid and semi-arid climate regions of the world cause serious problems on civil engineering structures. Such soils swell when given an access to water and shrink when they dry out. Several attempts are being made to control the swell-shrink behavior of these soils. Soil stabilization using chemical admixtures is the oldest and most widespread method of ground improvement. In this study, waste limestone dust and waste dolomitic marble dust, by-products of marble industry, were us...
Citation Formats
M. Yılmaz, “Active microwave remote sensing of soil moisture : a case study in Kurukavak Basin ,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.