Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy- aware task scheduling over mobile ad hoc networks
Download
index.pdf
Date
2009
Author
Bokar, Ali
Metadata
Show full item record
Item Usage Stats
198
views
88
downloads
Cite This
Mobile ad hoc networks (MANETs) can be formed dynamically without the support of any existing infrastructure or any centralized administration. They consist of heterogeneous mobile nodes which are powered by batteries, move arbitrarily and are connected by wireless links. Battery energy limitation is one of the main challenges in the MANETs. Several hardware and software based techniques have been proposed in this field. Most of the previous studies have considered only the energy minimization of individual nodes and disregarded the overall network lifetime. Topology management is another important problem in MANETs, in this sense; several new computing paradigms have been developed by the researchers, and the topology management has not been studied clearly in most of these models. In this study, we propose two new techniques that deal with the topology management in order to facilitate the nodes’ cooperation towards energy saving. The developed computing model considers heterogeneous mobile nodes. A node that faces shortage in its resources (energy and processing capability) sends its work to one of the nearby devices which is able to execute the work. In addition, we propose two algorithm for dynamic and two for static task scheduling, to prolong the network life time. Comprehensive experiments showed that the proposed schemes achieve a significant improvement in the network lifetime while simultaneously reducing the energy consumption and time delay for each task.
Subject Keywords
Electronic computers.
URI
http://etd.lib.metu.edu.tr/upload/3/12610313/index.pdf
https://hdl.handle.net/11511/18383
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Performance evaluation of routing protocols in wireless ad hoc networks with service differentiation
Yılmaz, Semra; Koçyiğit, Altan; Erten, Murat; Department of Information Systems (2003)
An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any fixed network infrastructure or centralized administration. Due to the limitations in the wireless environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination. In order to enable communication within the network, a routing protocol is needed to discover routes between nodes. The primary goal of ad hoc network routing pro...
Energy-aware routing algorithms for wireless ad hoc networks with heterogeneous power supplies
Vazifehdan, Javad; Prasad, R. Venkatesha; Onur, Ertan; Niemegeers, Ignas (Elsevier BV, 2011-10-27)
Although many energy-aware routing schemes have been proposed for wireless ad hoc networks, they are not optimized for networks with heterogeneous power supplies, where nodes may run on battery or be connected to the mains (grid network). In this paper, we propose several energy-aware routing algorithms for such ad hoc networks. The proposed algorithms feature directing the traffic load dynamically towards mains-powered devices keeping the hop count of selected routes minimal. We unify these algorithms into...
Software implementations of QoS scheduling algorithms for high speed networks /
Pehlivanlı, Aydın; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2015)
The end to end Quality of Service (QoS) support for the dominating multimedia traffic in the contemporary computer networks is achieved by implementing schedulers in the routers and deploying traffic shapers. To this end, realistic modeling and simulation of these components is essential for network performance evaluation. The first contribution of this thesis is the design and implementation of a C++ simulator QueST (Quality of Service simulaTor) for this task. QueST is a modular cycle accurate simulator w...
Positioning based on tracking of signal parameters in a single base station wimax network using fingerprinting
Köksal, Murat Miran; Genç, Fethi Payidar; Department of Computer Engineering (2010)
IEEE 802.16 is a point to multipoint broadband wireless access standard, designed from ground up for fast and reliable mobile networking. Several location-related MAC layer fields specified in the standard indicate that WiMAX networks can be convenient backbones for future positioning systems. Information encapsulated in MAC headers is especially important for single base station positioning systems which require fewer network resources than multiple reference station location systems, but need more locatio...
Duty cycle control in wireless sensor networks
Yılmaz, Mine; Bilgen, Semih; Department of Electrical and Electronics Engineering (2007)
Recent advances in wireless communication and micro-electro-mechanical systems (MEMS) have led to the development of implementation of low-cost, low power, multifunctional sensor nodes. These sensor node are small in size and communicate untethered in short distances. The nodes in sensor networks have limited battery power and it is not feasible or possible to recharge or replace the batteries, therefore power consumption should be minimized so that overall network lifetime will be increased. In order to mi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bokar, “Energy- aware task scheduling over mobile ad hoc networks,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.