Hide/Show Apps

Evaluation of shear wall indexes for reinforced concrete buildings

Soydaş, Ozan
An analytical study was carried out to evaluate shear wall indexes for low to mid-rise reinforced concrete structures. The aim of this study was to evaluate the effect of different shear wall ratios on performance of buildings to be utilized in the preliminary assessment and design stages of reinforced concrete buildings with shear walls. In order to achieve this aim, forty five 3D building models with two, five and eight storeys having different wall ratios were generated. Linearly elastic and nonlinear static pushover analyses of the models were performed by SAP2000. Variation of roof drift and interstorey drift with shear wall ratio was obtained and results were compared with the results of approximate procedures in the literature. Additionally, performance evaluation of building models was carried out according to the linearly elastic method of Turkish Earthquake Code 2007 with Probina Orion. According to the results of the analysis, it was concluded that drift is generally not the primary concern for low to mid-rise buildings with shear walls. A direct relationship could not be established between wall index and code performance criteria. However, approximate limits for wall indexes that can be used in the preliminary design and assessment stages of buildings were proposed for different performance levels.