Seismic behavior assessment of low-rise reinforced concrete structural walls using quasi-static reversed cyclic loading protocol

Ezzatfar, Pourang
The reinforced concrete shear walls of low- to mid-rise residential buildings, having height to length ratio ranging from 1 to 3, are more of a concern in research studies in recent years. Since the failure mode of these walls depends on the interaction between shear and flexural action, predicting the failure mode of this type of shear walls is not straight forward. While seismic behavior of highrise walls (i.e. aspect ratio greater than about 3) is almost known and theoretical assumptions matches well with experimental findings, experimental and theoretical studies are still demanding to better understand the seismic behavior, failure modes, lateral load bearing and deformation capacities of low- to mid-rise RC shear walls. Most of the available experimental studies within the relevant iterature were done on isolated cantilever RC walls in laboratories. However, simulating the effect of earthquake loads on large scale RC shear walls surrounded by frame elements is very rare. In order to investigate the seismic performance of the RC shear walls in conjunction with other structural elements as a system in low- to mid-rise buildings, two ½ scaled three-story three-bay RC test frames with RC shear wall in middle bay were tested. One of the specimens was designed to Turkish earthquake code (TEC-2007) and Turkish reinforced concrete practice code (TS500-2000) and the other was designed according to TEC-1975 and TS500-1981. Modeling parameters and acceptance criteria for nonlinear analysis given by ASCE/SEI41-13 and TEC-2007 for the investigated RC shear wall specimens were assessed.