Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical investigation of natural convection from vertical plate finned heat sinks
Download
index.pdf
Date
2009
Author
Çakar, Kamil Mert
Metadata
Show full item record
Item Usage Stats
317
views
134
downloads
Cite This
The steady-state natural convection from vertically placed rectangular fins is investigated numerically by means of a commercial CFD program called ICEPAK. The effects of geometric parameters of fin arrays on the performance of heat dissipation from fin arrays are examined. In order to simulate the different fin configurations and compare the results with literature, two experimental studies from literature are selected. Optimum fin spacing for both studies are found numerically and compared with experimental studies. The models are first verified by simulating natural convection on vertically placed flat plate and comparing the results with literature. After verification 30 different fin array configurations for the first experimental case study and 15 different fin array configurations for the second experimental case study from literature are analyzed. It is observed that the present results agree very well with the optimum fin spacing results of the experimental studies. It is also observed that the empirical correlations in the literature are conservative and the numerically obtained correlations predict higher heat transfer rates.
Subject Keywords
Mechanical engineering.
,
Natural convection.
URI
http://etd.lib.metu.edu.tr/upload/12610679/index.pdf
https://hdl.handle.net/11511/18551
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical investigation of unsteady natural convection from a heated cylinder in a square enclosure
Bozkaya, Canan (null; 2015-07-06)
A numerical study of two dimensional, unsteady, incompressible natural convection flow and heat transfer is performed in a square enclosure involving a heated circular cylinder. The natural convection is driven by a temperature difference between the cold outer square and hot inner circular cylinders. The temperature of the inner cylinder varies sinusoidally with time about a fixed mean temperature while the outer enclosure is kept at a lower constant temperature. The problem under consideration, which is g...
FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field
TÜRK, ÖNDER; Tezer, Münevver (2017-03-01)
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide ()-water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the ...
Stabilizing subgrid FEM solution of the natural convection flow under high magnitude magnetic field on sinusoidal corrugated enclosure
Aydın, S. H.; Tezer, Münevver (Informa UK Limited, 2019-7-7)
This study deals with the stabilized finite element solution of the steady, natural convection flow in an enclosure under a magnetic field applied perpendicular to the sinusoidal corrugated vertical walls of the enclosure, in terms of primitive variables. Several vertical sinusoidal functions are selected for the comparison. A stabilized FEM scheme called SSM is proposed in order to obtain a stable solution for the high values of problem parameters with a cheap computational cost. Proposed numerical scheme ...
Natural convection flow of a nanofluid in an enclosure under an inclined uniform magnetic field
Tezer, Münevver; Bozkaya, Canan (2016-01-01)
In this study, the natural convection in a square enclosure filled with water-based aluminium oxide (Al2O3) under the influence of an externally applied inclined magnetic field is considered numerically. The flow is steady, two-dimensional and laminar; the nanoparticles and water are assumed to be in thermal equilibrium. The governing equations are solved in terms of stream function-vorticity-temperature using both the dual reciprocity boundary element method and the finite element method to see the influen...
Magnetohydrodynamic convection of Cu-water nanofluid in a square cavity with a circular cylinder
Bozkaya, Canan (2016-01-01)
The hydromagnetic free convection of a Cu-water nanofluid in a square cavity involving an adiabatic circular cylinder is numerically investigated in the presence of an inclined uniform magnetic field. The left and right walls of the cavity are kept at constant hot and cold temperatures, respectively, while the horizontal walls are assumed to be adiabatic. The coupled nonlinear equations of mass, momentum and energy governing the present problem are discretized using the dual reciprocity boundary element met...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. M. Çakar, “Numerical investigation of natural convection from vertical plate finned heat sinks,” M.S. - Master of Science, Middle East Technical University, 2009.