Hide/Show Apps

Fundamentals of a metal surface imaging system based on laser-optic principles

Bektaş, Murat
The confocal laser-scanning microscope (CLSM), known simply as a confocal microscope, is an important instrument which allows us to observe an object or a surface in three-dimensions with confocal microcopy technique. The basic difference of confocal microscopy is detecting the in- focused light, while the out of focus light is blocked out by the help of a pinhole. By this optical dissection ability of confocal microcopy, CLSM provides the images of investigated object or the surface with higher resolution and contrast as against conventional microscopic systems. Various types of Laser Scanning confocal microscopes have been developed and due to its high resolution and contrast they have become an invaluable tool for investigations in many areas like biology and medicine. In addition to its wide range of use, confocal microscope can be used for detecting of possible defects on metal surfaces. In this thesis our goal was to develop the analytical and theoretical back ground necessary for the successful completion of a laser/optic system coupled to a fiber bundle waveguide based on confocal scanning principles to effectively image a non-uniform, metal surface with speed and precision in order to assess any surface damage. In addition to this analysis we demonstrate a working confocal microscopy set-up and investigate the factors which affect the image quality by the experiments conducted in METU (Middle East Technical University) Laser Laboratory.