Hide/Show Apps

Approaches for automatic urban building extraction and updating from high resolution satellite imagery

Koç San, Dilek
Approaches were developed for building extraction and updating from high resolution satellite imagery. The developed approaches include two main stages: (i) detecting the building patches and (ii) delineating the building boundaries. The building patches are detected from high resolution satellite imagery using the Support Vector Machines (SVM) classification, which is performed for both the building extraction and updating approaches. In the building extraction part of the study, the previously detected building patches are delineated using the Hough transform and boundary tracing based techniques. In the Hough transform based technique, the boundary delineation is carried out using the processing operations of edge detection, Hough transformation, and perceptual grouping. In the boundary tracing based technique, the detected edges are vectorized using the boundary tracing algorithm. The results are then refined through line simplification and vector filters. In the building updating part of the study, the destroyed buildings are determined through analyzing the existing building boundaries and the previously detected building patches. The new buildings are delineated using the developed model based approach, in which the building models are selected from an existing building database by utilizing the shape parameters. The developed approaches were tested in the Batikent district of Ankara, Turkey, using the IKONOS panchromatic and pan-sharpened stereo images (2002) and existing vector database (1999). The results indicate that the proposed approaches are quite satisfactory with the accuracies computed in the range from 68.60% to 98.26% for building extraction, and from 82.44% to 88.95% for building updating.