Hide/Show Apps

Co-combustion of coal and olive cake in a fluidized bed with limestone addition and freeboard extension

Akpulat, Onur
In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal are investigated in a bubbling fluidized bed with an inside diameter of 102 mm and a height of 900 mm and 1900 mm. Tunçbilek lignite coal and Edremit olive cake were used in the experiments as fuels. Temperature distributions along the combustion column were continuously measured. Flue gas concentrations of O2, CO, SO2 and NOx were measured during combustion experiments. Four sets of experiments were performed in order to examine the effect of fuel composition, excess air ratio, freeboard extension and limestone addition on flue gas emissions and combustion efficiency. The olive cake addition to coal were 25, 50, 75 % by wt. The bed temperature on the average was 850 oC. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO2 and NOx emissions decreased. The reason for the decrease of NOx emissions with increasing percentage of olive cake in the fuel mixture was due to a reducing atmosphere created in the combustion column. Mostly combustion losses resulted mainly from the unburnt carbon in the fly ash. With the freeboard extension, noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed. Among the limestones tested, Çan limestone gave the best result with Ca/S = 3 at an optimum bed temperature of 850 oC. The SO2 reduction was 87% at this Ca/S ratio. For co-combustion experiments, it was observed that SO2 adsorption efficiency of limestone increased with the addition of olive cake to the fuel mixture.