Enzyme immobilization on titania-silica-gold thin films for biosensor applications and photocatalytic enzyme removal for surface patterning

Çınar, Merve
The aim of this study was to investigate the viability of patterning by immobilization, photocatalytic removal, and re-immobilization steps of the enzyme on photocatalytically active thin films for biosensor fabrication purposes. For this aim, TiO2-SiO2-Au sol-gel colloids were synthesized and deposited on glass substrates as thin films by dip coating. Cysteamine linker was assembled on gold nanoparticles to functionalize thin films with amine groups for immobilization of model enzyme invertase. Effect of immobilization temperature, enzyme concentration of the immobilization solution and immobilization period on invertase immobilization were investigated. The immobilized invertase activity was found independent from the immobilization temperature in the range tested (4oC-room temperature). The optimum enzyme concentration and period for immobilization was determined as 10µg/ml and 12 hours respectively. The resulting invertase immobilized thin films showed high storage stability retaining more that 50% of their initial activity after 9 weeks of storage. Photocatalytic enzyme removal and re-immobilization studies were carried out by irradiating the invertase immobilized thin films with blacklight. Upon 30 minutes of irradiation, immobilized invertase was completely and irreversibly inactivated. Initial immobilized invertase activity (before the irradiation) was attained when invertase was re-immobilized on thin films that were irradiated for 5 hours. Thus it was inferred that with sufficient exposure, enzymes can be completely removed from the surfaces which makes the re-immobilization possible. The possibility of enzyme removal with photocatalytic activity and re-immobilization can pave the way to new patterning techniques to produce multi-enzyme electrode arrays.


Preparation and characterization of titania-silica-gold thin films over ito substrates for laccase immobilization
Eker, Zeynep; Karakaş, Gürkan; Department of Micro and Nanotechnology (2009)
The aim of this study was to immobilize the redox enzyme laccase over TiO2-SiO2-Au thin film coated ITO glass substrates in order to prepare electrochemically active surfaces for biosensor applications. Colloidal TiO2-SiO2-Au solution was synthesized by sol-gel route and thin film was deposited onto the substrates by dipcoating method. The cysteamine was utilized as a linker for immobilization of enzyme covalently through gold active sites. Preliminary studies were conducted by using invertase as model enzy...
Kinetic studies for the production of tertiary ethers used as gasoline additives
Boz, Nezahat; Doğu, Timur; Department of Chemical Engineering (2004)
In the present study, the kinetics studies for etherification reactions were investigated in detail. In the first phase of present study, different acidic resin catalysts were prepared by the heat treatment of Amberlyst-15 catalysts at 220°C at different durations of time and also by the synthesis of sulfonated styrene divinylbenzene cross-linked resins at different conditions. A linear dependence of reaction rate on hydrogen ion-exchange capacity was in 2M2B+ethanol reaction. However, in the case of 2M1B+e...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Effects of carbon sources and feeding strategies on human growth hormone production by metabolically engineered pichia pastoris
Açık, Eda; Çalık, Pınar; Department of Chemical Engineering (2009)
In this study, effects of different carbon sources and their feeding strategies on recombinant human growth hormone (rhGH) production by Pichia pastoris were investigated by means of cell growth, recombinant protein production and expression levels of hGH and alcohol oxidase (AOX) genes. In this content, firstly, the strain to be used for high level rhGH production was selected between the two phenotypes, i.e., P. pastoris hGH-Mut+ and P. pastoris hGH-MutS. In this selection both phenotypes were compared in...
Photocatalytic and photoelectrochemical water splitting over ordered titania nanotube arrays
Karslıoğlu, Osman; Üner, Deniz; Department of Chemical Engineering (2009)
The objective of this study was to investigate photocatalytic water splitting over ordered TiO2 nanotube arrays. Synthesis of ordered nanotube arrays of titania, as a micron thick film on a titanium foil was accomplished by electrochemical anodization methods defined in the literature. Effect of two types of electrolyte (aqueous and organic) on the micro-morphology was observed by scanning electron microscopy. Optimum anodization times for the TiO2 nanotube electrodes, synthesized in ethylene glycol electro...
Citation Formats
M. Çınar, “Enzyme immobilization on titania-silica-gold thin films for biosensor applications and photocatalytic enzyme removal for surface patterning,” M.S. - Master of Science, Middle East Technical University, 2009.