Design of self-organizing map type electromagnetic target classifiers for dielectric spheres and conducting aircraft targets with investigation of their noise performances

Download
2009
Katılmış, Tufan Taylan
The Self-Organizing Map (SOM) is a type of neural network that forms a regular grid of neurons where clusters of neurons represent different classes of targets. The aim of this thesis is to design electromagnetic target classifiers by using the Self-Organizing Map (SOM) type artificial neural networks for dielectric and conducting objects with simple or complex geometries. Design simulations will be realized for perfect dielectric spheres and also for small-scaled aircraft targets modeled by thin conducting wires. The SOM classifiers will be designed by target features extracted from the scattered signals of targets at various aspects by using the Wigner distribution. Noise performance of classifiers will be improved by using slightly noisy input data in SOM training.

Suggestions

Computation of radar cross sections of complex targets by shooting and bouncing ray method
Özgün, Salim; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2009)
In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR) algorithm is developed to compute the Radar Cross Section (RCS) of complex targets. SBR is based on ray tracing and combine Geometric Optics (GO) and Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The presented algorithm is examined in two parts; the first part addresses a new aperture selection strategy named as “conformal aperture”, which is proposed and formulated to increase the performance of the cod...
A comparative performance evaluation of scale invariant interest point detectors for infrared and visual images
Emir, Erdem; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2008)
In this thesis, the performance of four state-of-the-art feature detectors along with SIFT and SURF descriptors in matching object features of mid-wave infrared, long-wave infrared and visual-band images is evaluated across viewpoints and changing distance conditions. The utilized feature detectors are Scale Invariant Feature Transform (SIFT), multiscale Harris-Laplace, multiscale Hessian-Laplace and Speeded Up Robust Features (SURF) detectors, all of which are invariant to image scale and rotation. Feature...
Identification of electromagnetic scattering mechanisms by two dimensional windowed fourier transform approach
Germeç, K. Egemen; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2004)
In this thesis, it is demonstrated that the two-dimensional Windowed Fourier Transform (WFT) can be effectively used to analyze the local spectral characteristics of electromagnetic scattering signals in the two-dimensional spatial frequency domain. The WFT is the extension of the Short Time Fourier Transform (STFT), which was originally derived to analyze the local spectral characteristics of one dimensional time functions. Since the WFT focuses on the local spectral behavior of the scattered field, the si...
The electrical characteristics of antennas in their operational environment
Afacan, Gönenç; Tuncay, Birand; Department of Electrical and Electronics Engineering (2007)
This thesis investigates the variations of electrical properties of linear antennas mounted on certain platforms, depending on the physical properties of that platform. In this respect, related basic antenna simulations, electromagnetic simulations from primitive to complex models of airframes, and scale model measurements were used. Firstly, electrical properties of monopoles at known environment were examined and basic analyses were performed via an electromagnetic simulation tool, named CST Microwave Stu...
3d object recognition by geometric hashing for robotics applications
Hozatlı, Aykut; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2009)
The main aim of 3D Object recognition is to recognize objects under translation and rotation. Geometric Hashing is one of the methods which represents a rotation and translation invariant approach and provides indexing of structural features of the objects in an efficient way. In this thesis, Geometric Hashing is used to store the geometric relationship between discriminative surface properties which are based on surface curvature. In this thesis surface is represented by shape index and splash where shape ...
Citation Formats
T. T. Katılmış, “Design of self-organizing map type electromagnetic target classifiers for dielectric spheres and conducting aircraft targets with investigation of their noise performances,” M.S. - Master of Science, Middle East Technical University, 2009.