A comparative performance evaluation of scale invariant interest point detectors for infrared and visual images

Download
2008
Emir, Erdem
In this thesis, the performance of four state-of-the-art feature detectors along with SIFT and SURF descriptors in matching object features of mid-wave infrared, long-wave infrared and visual-band images is evaluated across viewpoints and changing distance conditions. The utilized feature detectors are Scale Invariant Feature Transform (SIFT), multiscale Harris-Laplace, multiscale Hessian-Laplace and Speeded Up Robust Features (SURF) detectors, all of which are invariant to image scale and rotation. Features on different blackbodies, human face and vehicle images are extracted and performance of reliable matching is explored between different views of these objects each in their own category. All of these feature detectors provide good matching performance results in infrared-band images compared with visual-band images. The comparison of matching performance for mid-wave and long-wave infrared images is also explored in this study and it is observed that long-wave infrared images provide good matching performance for objects at lower temperatures, whereas mid-wave infrared-band images provide good matching performance for objects at higher temperatures. The matching performance of SURF detector and descriptor for human face images in long-wave infrared-band is found to be outperforming than other detectors and descriptors.

Suggestions

User directed view synthesis on omap processors
Yıldız, Mürsel; Akar, Gözde; Department of Electrical and Electronics Engineering (2009)
In this thesis, real time image rendering for hand held devices is studied according to user’s view point choice and using image frames with corresponding depth maps obtained from 2 different cameras, of which positions on coordinate system is known. User’s view point choice is restricted to the area between right, and left cameras. Occlusion handling methods for image rendering systems is explored and discussed together with frame enhancement techniques. Median filtering is studied for multicolor image fra...
Design of self-organizing map type electromagnetic target classifiers for dielectric spheres and conducting aircraft targets with investigation of their noise performances
Katılmış, Tufan Taylan; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2009)
The Self-Organizing Map (SOM) is a type of neural network that forms a regular grid of neurons where clusters of neurons represent different classes of targets. The aim of this thesis is to design electromagnetic target classifiers by using the Self-Organizing Map (SOM) type artificial neural networks for dielectric and conducting objects with simple or complex geometries. Design simulations will be realized for perfect dielectric spheres and also for small-scaled aircraft targets modeled by thin conducting...
The electrical characteristics of antennas in their operational environment
Afacan, Gönenç; Tuncay, Birand; Department of Electrical and Electronics Engineering (2007)
This thesis investigates the variations of electrical properties of linear antennas mounted on certain platforms, depending on the physical properties of that platform. In this respect, related basic antenna simulations, electromagnetic simulations from primitive to complex models of airframes, and scale model measurements were used. Firstly, electrical properties of monopoles at known environment were examined and basic analyses were performed via an electromagnetic simulation tool, named CST Microwave Stu...
Dense depth map estimation for object segmentation in multi-view video
Çığla, Cevahir; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2007)
In this thesis, novel approaches for dense depth field estimation and object segmentation from mono, stereo and multiple views are presented. In the first stage, a novel graph-theoretic color segmentation algorithm is proposed, in which the popular Normalized Cuts 59H[6] segmentation algorithm is improved with some modifications on its graph structure. Segmentation is obtained by the recursive partitioning of the weighted graph. The simulation results for the comparison of the proposed segmentation scheme w...
Identification of electromagnetic scattering mechanisms by two dimensional windowed fourier transform approach
Germeç, K. Egemen; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2004)
In this thesis, it is demonstrated that the two-dimensional Windowed Fourier Transform (WFT) can be effectively used to analyze the local spectral characteristics of electromagnetic scattering signals in the two-dimensional spatial frequency domain. The WFT is the extension of the Short Time Fourier Transform (STFT), which was originally derived to analyze the local spectral characteristics of one dimensional time functions. Since the WFT focuses on the local spectral behavior of the scattered field, the si...
Citation Formats
E. Emir, “A comparative performance evaluation of scale invariant interest point detectors for infrared and visual images,” M.S. - Master of Science, Middle East Technical University, 2008.