The effects of post-annealing process on the physical properties of silver-indium-selenium ternary semiconductor thin films deposited by electron beam technique

Download
2009
Çolakoğlu, Tahir
Ternary chalcopyrite compounds are the semiconductors with suitable properties to be used as absorber materials in thin film solar cells. AgInSe2 is a promising candidate with its several advantages over the widely used CuInSe2. The purpose of this study was to optimize the physical properties of the Ag-In-Se (AIS) thin films that were deposited by e-beam evaporation of Ag3In5Se9 single crystal powder for solar cell applications by means of post-annealing process under nitrogen atmosphere. The as-grown AIS thin films were annealed at 200, 300 and 400oC and their structural, optical, electrical and photoelectrical properties were examined to observe the effects of post-annealing process. Structural characterization of the films was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. Optical properties of the films were investigated by optical transmittance measurements. Electrical and photoelectrical properties of the films were examined by temperature dependent conductivity, photoconductivity under different illumination intensities and spectral photoresponse measurements. It was discovered that the annealing of AIS thin films at 200oC resulted in the best physical properties for solar cell applications. The obtained films were polycrystalline with mixed binary and ternary crystalline phases, such as Ag3In5Se9, AgInSe2 and InSe, and showed n-type conductivity with room temperature conductivity value of 2.3x10-6 (Ohm­ cm)-1. The band gap energy of the 200oC-annealed films was determined as 1.68 eV from spectral photoresponse measurements. The results of the study revealed that the inadequate Ag incorporation and segregation and/or reevaporation of Se atoms at high annealing temperatures were the major problems encountered in producing single phase polycrystalline AgInSe2 thin films. The required stoichiometry of thin films should be maintained during the growth of the films by means of an alternative deposition procedure and the films should be selenized during post-annealing process.

Suggestions

A density functional theory study of oxidation of benzene to phenol by N2O on Fe- and Co-ZSM-5 clusters
Fellah, Mehmet Ferdi; Önal, Işık (2009-06-01)
Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N2O on relaxed [(SiH3)(4)AlO4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formatio...
The effects of carbon content on the properties of plasma deposited amorphous silicon carbide thin films
Sel, Kıvanç; Atılgan, İsmail; Department of Physics (2007)
The structure and the energy band gap of hydrogenated amorphous silicon carbide are theoretically revised. In the light of defect pool model, density of states distribution is investigated for various regions of mobility gap. The films are deposited by plasma enhanced chemical vapor deposition system with various gas concentrations at two different, lower (30 mW/cm2) and higher (90 mW/cm2), radio frequency power densities. The elemental composition of hydrogenated amorphous silicon carbide films and relativ...
The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni)
ERKİŞİ, AYTAÇ; SÜRÜCÜ, GÖKHAN; DELİGÖZ, ENGİN (World Scientific Pub Co Pte Lt; 2018-03-10)
In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA+U)...
The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures
Altindal, S.; Parlaktuerk, F.; Tataroglu, A.; Parlak, Mehmet; Sarmasov, S. N.; Agasiev, A. A. (Elsevier BV, 2008-06-19)
The Bi4Ti3O12 (BTO) thin film were fabricated on an n-type Si substrate and annealed by rapid thermal annealing methods. The temperature dependence of capacitance-voltage (C-V) and conductance-voltage (G/omega-V) characteristics of the Au/Bi4Ti3O12/SiO2/n-Si metal-ferroelectric-insulator-semiconductor (MFIS) structures was investigated by taking the effects of series resistance (R-s) and interface states (N-ss) in the temperature range of 80-400 K. Both the density of interface states N-ss and series resist...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Citation Formats
T. Çolakoğlu, “The effects of post-annealing process on the physical properties of silver-indium-selenium ternary semiconductor thin films deposited by electron beam technique,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.