Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis of silver nanoparticles and cable like structures through coaxial electrospinning
Download
index.pdf
Date
2009
Author
Çınar, Simge
Metadata
Show full item record
Item Usage Stats
236
views
127
downloads
Cite This
The aim of this study is to demonstrate the possibility of production of nanocables as an alternative to the other one dimensional metal/polymer composite structures like nanowires and nanorods. There is no certain definition of nanocables; however they could be considered as assemblies of nanowires. Nanocable structure can be defined as a core-shell structure formed by a polymeric shell and a metal core that runs continuously within this shell. To produce nanocables, two main steps were carried out. Firstly, monodispersed silver metal nanoparticles to be aligned within the cable core were produced. Investigations on reduction reactions in the presence of strong and weak reducing agents and different capping agents revealed the importance of the kinetics of reduction in the production of monodispersed nanoparticles. Use of capping agents to give a positive reduction potential, resulted in the slow reduction rates that was critical for fine tuning of the final particle sizes between 1-10 nm. Hydrazine hydrate and oleylamine/ oleic acid systems were used as strong and weak reducing agents, respectively. By using weak reducing agent, monodisperse spherical silver nanoparticles with the diameter of 2.7 nm were produced. It was shown that particles with controlled diameter and size distribution can be obtained by tuning the system parameters. Secondly, particles produced as such were electrospun within the core of the polymer nanofibers and long continuous nanocables were produced. Polyvinyl pyrrolidone and polycaprolactone were used in shell part of nanocables. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), photon correlation spectroscopy (PCS), X-ray diffraction (XRD) and surface plasmon resonance spectroscopy (SPR) analyses were carried out in order to understand the mechanism by which the nanoparticles were reduced and for further characterization of the product.
Subject Keywords
Chemical engineering.
URI
http://etd.lib.metu.edu.tr/upload/2/12611472/index.pdf
https://hdl.handle.net/11511/19223
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Metal polymer composite nanofiber production by electrospinning
Karakoç, Nihan; Gündüz, Güngör; Department of Chemical Engineering (2009)
This study aims synthesis of metal/polymer one dimensional nanostructures by micelle formation, reduction, and electrospinning route, and to analyze the morphological characteristics of composite nanofibers. The study was carried out in three main steps. First, the reverse micelle structures were established between the anionic surfactant and the metal ion. The surfactant acts as an agent to bind metal ions together so that the arrangements of metal ions can be controlled in the solution. As the surfactant ...
An empirical method for the second viral coefficients of non-standard fluids
Kis, Konrad; Orbey, Hasan (Elsevier BV, 1989-9)
A new empirical method is proposed for the extension of Pitzer-Curl type correlations of the second virial coefficient to non-standard fluids as define
Chiral seperations by enzyme enhanced ultrafiltration : fractionation ofracemic benzoin
Ölçeroğlu, Ayşe Hande; Yılmaz, Levent; Department of Chemical Engineering (2006)
In this study, a methodology for separation of chiral molecules, by using enhanced ultrafiltration system was developed. Benzoin was the model chiral molecule studied. In the scope of developing this methodology, some parameters were investigated in the preliminary ultrafiltration experiments in order to set the operation conditions for enhanced ultrafiltration experiments. Due to the slight solubility of benzoin in pure water, 15% (v/v) Polyethylene glycol (PEG 400) and 30 % (v/v) Dimethyl sulfoxide (DMSO)...
FINITE VOLUME SIMULATION OF 2-D STEADY SQUARE LID DRIVEN CAVITY FLOW AT HIGH REYNOLDS NUMBERS
YAPICI, KERİM; Uludağ, Yusuf (FapUNIFESP (SciELO), 2013-10-01)
In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re) 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK) is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform st...
Photocatalytic and photoelectrochemical water splitting over ordered titania nanotube arrays
Karslıoğlu, Osman; Üner, Deniz; Department of Chemical Engineering (2009)
The objective of this study was to investigate photocatalytic water splitting over ordered TiO2 nanotube arrays. Synthesis of ordered nanotube arrays of titania, as a micron thick film on a titanium foil was accomplished by electrochemical anodization methods defined in the literature. Effect of two types of electrolyte (aqueous and organic) on the micro-morphology was observed by scanning electron microscopy. Optimum anodization times for the TiO2 nanotube electrodes, synthesized in ethylene glycol electro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Çınar, “Synthesis of silver nanoparticles and cable like structures through coaxial electrospinning,” M.S. - Master of Science, Middle East Technical University, 2009.