Hide/Show Apps

A quantum chemical study of water and ammonia adsorption mechanisms on titanium dioxide surfaces

Erdoğan, Rezan
Theoretical methods can be used to describe surface chemical reactions in detail and with sufficient accuracy. Advances, especially in density functional theory (DFT) method, enable to compare computational results with experiments. Quantum chemical calculations employing ONIOM DFT/B3LYP/6-31G**-MM/UFF cluster method provided in Gaussian 03 are conducted to investigate water adsorption on rutile (110), and water and ammonia adsorption on anatase (001) surfaces of titanium dioxide. Water and ammonia adsorption on anatase (001) surface is studied by also performing PW:DFT-GGA-PW91 periodic DFT method by using VASP code and the results are compared with the results of ONIOM method. The results obtained by means of ONIOM method indicate that dissociative water adsorption on rutile (110) surface is not favorable due to high activation barrier, whereas on anatase (001) surface, it is favorable since molecular and dissociative water adsorption energies are calculated to be -23.9 kcal/mol and -58.12 kcal/mol. Moreover, on anatase (001) surface, dissociative ammonia adsorption is found energetically more favorable than molecular one (-37.17 kcal/mol vs. -23.28 kcal/mol). Thermodynamic functions at specific experimental temperatures for water and ammonia adsorption reactions on anatase (001) surface are also evaluated. The results obtained using periodic DFT method concerning water adsorption on anatase (001) surface indicate that dissociative adsorption is more favorable than molecular one (-32.28 kcal/mol vs. -14.62 kcal/mol) as in ONIOM method. On the same surface molecular ammonia adsorption energy is computed as -25.44 kcal/mol. The vibration frequencies are also computed for optimized geometries of adsorbed molecules. Finally, computed adsorption energy and vibration frequency values are found comparable with the values reported in literature.