Ab Initio studies of pentacene on AG(111) surfaces

Download
2010
Demiroğlu, İlker
In this work pentacene adsorption on both flat and stepped Ag(111) surfaces were investigated by using Density Functional Theory within Projected Augmented Wave method. On the flat Ag(111) surface favorable adsorption site for a single pentacene molecule was determined to be the bridge site with an angle of 60◦ between pentacene molecular long axis and [011] lattice direction. Potential energy surface was found to be flat, especially along lattice directions. Diffusion and rotation barriers for pentacene on this surface were found to be smaller than 40 meV indicating the possibility of a two dimensional gas phase. Calculated adsorption energies for the flat surface indicate a weak interaction between molecule and the surface indicating physisorption. On the flat surface monolayer case is found to have lower adsorption energy than the isolated case due to pentacene−pentacene interactions. On the stepped Ag(233) surface, close to the step edge, adsorption energy increased significantly due to the stronger interaction between pentacene molecule and low coordinated silver step atoms. On the terraces of this surface, far from step edges, however a flat potential energy surface was observed similar to the case of flat Ag(111) surface. On the stepped surface pentacene found its favorable configuration as parallel to the step with a tilt angle similar to the observed thin film phase of pentacene on Ag(111) surface. Pentacene molecule showed small distortions on stepped surface and are closer to the silver step atoms 1 Å more than the case of flat surface, hinting a chemical interaction as well as van der Waals interactions. However on Ag(799) surface, the perpendicular orientation of the pentacene molecule to the step direction showed no strong interaction due to less matching of carbon atoms with silver step atoms.

Suggestions

Microscopic study of nuclear level density
Gholami, Mehrdad; Kıldır, Mehmet; Department of Chemistry (2007)
Level densities and spin cut-off factors have been investigated within the microscopic approach based on BCS Hamiltonian. In particular the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The results are compared with their corresponding macroscopic values. It is found that the values of spin cut-off parameter do not increase smoothly with A as expected based on macroscopic theory. Instead, the values of spin cut-off parameter...
Ab initio study of the one-monolayer Sb/Si(001) interface
Cakmak, M; Shaltaf, R; Srivastava, GP; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2003-06-10)
Ab initio calculations, based on norm-conserving pseudopotentials and density functional theory, have been performed to investigate the displacive Sb adsorption on the Si(0 0 1) surface with the (2 x 1) reconstruction. For the one-monolayer coverage of Sb, even though the formation of a pure Sb-Sb dimer is energetically more favorable than the interdiffusion of Sb into any of the second and third substrate layers, we found further that this interdiffusion will relieve the tensile stress along the dimer bond...
Growth of gold films on quartz surfaces for quartz crystal microbalance application
Özkan, Berrin; Danışman, Mehmet Fatih; Department of Chemistry (2010)
In this study, we have investigated the effect of substrate temperature, use of adhesive layer, deposition rate, annealing and substrate prebaking on the morphology of gold films deposited onto quartz surfaces. For the film growth, physical vapor deposition methods namely electron beam and thermal depositions have been used. Surface morphology of the films have been characterized with atomic force microscopy. Our aim was to confirm the general trends observed for these parameters in our evaporator system fo...
In situ DRIFTS characterization of wet-impregnated and sol-gel Pd/TiO 2 for NO reduction with CH4
Karakaş, Gürkan; Ozkan, Umit S. (Elsevier BV, 2002-05-01)
The adsorption/desorption behavior of 2%Pd/TiO2 catalysts synthesized by wet-impregnation and modified sol–gel techniques were examined in NO–CH4–O2 reaction using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalyst prepared by the modified sol–gel method showed significantly higher resistance toward oxygen while maintaining a 100% NO conversion. Under NO+CH4+O2 flow, the main adsorbed NO species was identified as the linearly adsorbed NO on metallic palladium (Pd0–NO)...
Amperometric microbial and enzymatic biosensors based on conducting polymers
Tunçagil, Sevinç; Toppare, Levent Kamil; Department of Chemistry (2010)
In this thesis, six different biosensors based on conducting polymers of poly 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine [poly(SNSNH2)] and poly(1- (4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole [poly(SNSNO2)] were prepared. Electrochemical technique was used for polymerization of conducting polymers and two different immobilization techniques; crosslinking and adsorption were used for immobilizing enzyme or microbial in the conducting polymer matrices. The proposed biosensors were characterized and...
Citation Formats
İ. Demiroğlu, “Ab Initio studies of pentacene on AG(111) surfaces,” M.S. - Master of Science, Middle East Technical University, 2010.