Hide/Show Apps

Amperometric microbial and enzymatic biosensors based on conducting polymers

Tunçagil, Sevinç
In this thesis, six different biosensors based on conducting polymers of poly 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine [poly(SNSNH2)] and poly(1- (4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole [poly(SNSNO2)] were prepared. Electrochemical technique was used for polymerization of conducting polymers and two different immobilization techniques; crosslinking and adsorption were used for immobilizing enzyme or microbial in the conducting polymer matrices. The proposed biosensors were characterized and optimized. Optimum pH, thickness of conducting polymer and biological material amount were determined. Linearity, repeatability and operational stability experiments were performed. Carbon nanotubes and gold nanoparticles were also added to the biosensing system to see the effects of nanoparticles. The biosensors also used for ethanol and/or glucose biosensing in commercial samples. In the first part of thesis, a biosensor was designed by immobilizing Gluconobacter oxydans in poly(SNSNH2) matrix on graphite electrode. The biosensor preparation method was a two-step procedure where the cells were immobilized by adsorption on the surface after the electropolymerization step.Use of dialysis membrane to cover the surface after immobilization conserves the bioactive surface during the operation. The preparation is simple and not time consuming. Systems proposed showed good linearity and repeatability as well as high operational stability. Glucose amount in fruit juice, ethanol amount in vodka and whisky were determined. In the second part of thesis, a second biosensor was designed with electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)- 1H-pyrrole via cyclic voltammetry on graphite electrode. Afterwards, Pseudomonas fluorescens and Gluconobacter oxydans were immobilized successfully on the conducting polymer matrix separately. The proposed biosensors showed good linear range, and repeatability as well as high operational stability. In the third and fourth parts, gold nanoparticle and carbon nanotube effects were studied on poly(SNSNH2)/glucose oxidase biosensor, respectively. Covalent binding of glucose oxidase was achieved to poly(SNSNH2) by the help of glutaraldehyde on the top of graphite and carbon paste electrodes. Nanoparticle amount and optimum pH were determined for both biosensors. After analytical characterization, glucose amount in two fruit juices were determined with poly(SNSNH2)/GOx/AuNP and poly(SNSNH2)/ GOx/CNT biosensors. In the last part, biosensor was designed with immobilizing alcohol oxidase in poly(SNSNH2) matrix via crosslinking with glutaraldehyde on platinum electrode. The proposed biosensor was characterized and optimized in terms of thickness, enzyme loading, pH, AuNPs, CNTs, linear range, repeatability and operational stability.