Investigation of cadmium removal mechanisms by clinoptilolite

Download
2009
İpçi, İrem
Clinoptilolite is a natural zeolite which can be used favorably in heavy metal removal. The main mechanisms for metal removal via clinoptilolite are adsorption and ion exchange. Several sources propose to keep the normality constant to obtain equilibrium isotherms for ion exchange systems, while many studies use constant sorbent mass with varying normalities of the sorbate. The objective of this study is to investigate the prevailing mechanisms of clinoptilolite during cadmium removal and the impact of the methodology for obtaining equilibrium isotherms. Batch Cd2+ removal experiments were conducted by using the two different methodologies (i.e. keeping the sorbent mass constant vs. keeping the normality constant) with clinoptilolite in as-received (AsC) and conditioned form (CnC), an ion exchange resin and granulated activated carbon. Exchangeable and framework cations, conductivity and pH were monitored during experiments. The equilibrium results were then fitted to isotherm models. The prevailing mechanisms for Cd2+ removal with clinoptilolite are discussed considering all monitored parameters and isotherm model fits. Use of the methodology was seen to have an effect on the overall Cd2+-clinoptilolite interaction. For example, differences between methodologies are observed regarding maximum sorbed Cd2+ and the distribution of exchangeable cations. Conductivity profiles provided a good indication of presence of ion exchange and demonstrated that it is more dominating for CnC than for AsC. The Cd2+ removal capacities observed in this study (0.65 meq/g for AsC and 1.46 meq/g for CnC) are the highest recorded for a clinoptilolite sample, as can be found in the literature.

Suggestions

Investigation of thin semiconductor coatings and their antimicrobial properties
Erkan, Arcan; Karakaş, Gürkan; Department of Chemical Engineering (2005)
Regular disinfection of surfaces is required in order to reduce the number of microorganisms, unable to transmit infections and maintaining the surfaces sterilized. For this purpose, antimicrobial thin film coatings on the various surfaces such as glass and ceramic surfaces, capable of killing harmful microorganisms are being investigated. Generally a semiconducting material which can be activated by UV light tends to exhibit a strong antimicrobial activity. With holes (h+) and hydroxyl radicals (OH*) gener...
A model for optimal operation of land-treatment sites for oily wastes
Ünlü, Kahraman (SAGE Publications, 2001-06-01)
Land treatment as a disposal technology has been extensively used for the disposal of oily wastes. Effective management of land treatment sites require optimal operation of the system in order to achieve the fastest and most complete degradation of petroleum hydrocarbons without contamination of the environment. This paper describes a model that can be used for optimising the operation of land treatment sites for oily wastes. The model is composed of system simulator and optimisation submodels. Conceptually...
Comparison of Structural Properties of Copper Deposits from Sulfate and Pyrophosphate Electrolytes
Arslan, Berna; ERDOĞAN, MUSTAFA; İmamoğlu, İpek; Karakaya, İshak (2013-11-01)
Aluminum is quite often plated to combine the advantages of the light metal with modified surface properties. In this study, copper strike electrodeposits obtained from cyanide and pyrophosphate strike baths were compared in terms of microstructure, and copper pyrophosphate strike was found to yield smoother deposits. Furthermore, about 50 µm thick copper depositions on the strike plated aluminum surface, were prepared from acid copper sulfate and copper pyrophosphate electrolytes to compare structural prop...
Application of ozonation and biotreatment for forest industry wastewater
Balcioglu, I. Akmehmet; Sarac, C.; Kivilcimdan, C.; Tarlan, E. (Informa UK Limited, 2006-12-01)
This research is focused on the integrated process for the treatment of bleached Kraft pulp mill effluents. Pre-ozonation of softwood and hardwood combined bleaching effluents at alkaline pH resulted in 50 and 44% COD abatement, respectively. Segregation of highly polluted streams of bleaching process can be recommended to reduce the cost of treatment since the COD removal yield of CEH effluents was higher than combined bleaching effluents. Moreover, biodegradability of CEH effluents in terms of BOD5/COD ra...
Exchange of cadmium and lead on sodium clinoptilolite zeolite
İşler, Hakan Murat; Yücel, Hayrettin; Department of Chemical Engineering (2010)
Heavy metal ions, such as cadmium and lead, should be removed from wastewaters to prevent bioaccumulation. Among many other separation processes, one of the alternatives is ion exchange involving a low cost packing material, clinoptilolite. Clinoptilolite is a natural zeolite and contains exchangeable cations such as Na+, K+, Mg2+, and Ca2+ in its structure. Aim of this study is to determine binary and multicomponent ion exchange behaviors of sodium enriched form of Gördes clinoptilolite for lead and cadmiu...
Citation Formats
İ. İpçi, “Investigation of cadmium removal mechanisms by clinoptilolite,” M.S. - Master of Science, Middle East Technical University, 2009.