Hide/Show Apps

Graduate school of natural and applied sciences : electrical and electronic engineering

Download
2010
Aksay, Anıl
In this thesis, a number of novel techniques for error resilient coding and streaming for multiview video are presented. First of all, a novel coding technique for stereoscopic video is proposed where additional coding gain is achieved by downsampling one of the views spatially or temporally based on the well-known theory that the human visual system can perceive high frequencies in 3D from the higher quality view. Stereoscopic videos can be coded at a rate upto 1.2 times that of monoscopic videos with little visual quality degradation with the proposed coding technique. Next, a systematic method for design and optimization of multi-threaded multi-view video encoding/decoding algorithms using multi-core processors is proposed. The proposed multi-core decoding architectures are compliant with the current international standards, and enable multi-threaded processing with negligible loss of encoding efficiency and minimum processing overhead. End-to-end 3D Streaming system over Internet using current standards is implemented. A heuristic methodology for modeling the end-toend rate-distortion characteristic of this system is suggested and the parameters of the system is optimally selected using this model. End-to-end 3D Broadcasting system over DVB-H using current standards is also implemented. Extensive testing is employed to show the importance and characteristics of several error resilient tools. Finally we modeled end-to-end RD characteristics to optimize the encoding and protection parameters.