Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of an axisymmetric, turbulent and unstructured navier-stokes solver
Download
index.pdf
Date
2010
Author
Akdemir, Mustafa
Metadata
Show full item record
Item Usage Stats
203
views
72
downloads
Cite This
An axisymmetric, Navier-Stokes finite volume flow solver, which uses Harten, Lax and van Leer (HLL) and Harten, Lax and van Leer–Contact (HLLC) upwind flux differencing scheme for spatial and uses Runge-Kutta explicit multi-stage time stepping scheme for temporal discretization on unstructured meshe is developed. Developed solver can solve the compressible axisymmetric flow. The spatial accuracy of the solver can be first or second order accurate. Second order accuracy is achieved by piecewise linear reconstruction. Gradients of flow variables required for piecewise linear reconstruction are calculated by Green-Gauss theorem. Baldwin-Lomax turbulent model is used to compute the turbulent viscosity. Approximate Riemann solver of HLL and HLLC implemented in solver are validated by solving a cylindrical explosion case. Also the solver’s capability of solving unstructured, multi-zone domain is investigated by this problem. First and second order results of solver are compared by solving the flow over a circular bump. Axisymmetric flow in solid propellant rocket motor is solved in order to validate the axisymmetric feature of solver. Laminar flow over flat plate is solved for viscous terms validation. Turbulent model is studied in the flow over flat plate and flow with mass injection test cases.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12611904/index.pdf
https://hdl.handle.net/11511/19589
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Implementation of turbulence models into a Navier-Stokes solver
Muşta, Mustafa Nail; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2004)
In order to handle turbulent flow problems, one equation turbulence models are implemented in to a previously developed explicit, Reynolds averaged Navier-Stokes solver. Discretization of Navier-Stokes solver is based on cell-vertex finite volume formulation combined with single step Lax-Wendroff numerical method which is second order accurate in space. Turbulent viscosity is calculated by using one equation Spalart-Allmaras and Baldwin-Barth turbulence transport equations. For the discretization of Spalart...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Investigation of periodic boundary conditions in multipassage cascade flows using overset grids
Tuncer, İsmail Hakkı; Sanz, W (ASME International, 1999-04-01)
A Navier-Stokes solutions method with overset grids is applied to unsteady multipassage cascade flows, and the unsteady blade loadings are compared against the single-passage solutions with the direct store interblade boundary condition. In the overset grid solutions, the multipassage domain is discretized with O-type grids around each blade and a rectangular background grid. Blade grids are allowed to move in time relative to the background grid as prescribed by the oscillatory plunging motion. The overset...
Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Adaptation of turbulence models to a navier-stokes solver
Gürdamar, Emre; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2005)
This thesis presents the implementation of several two-equation turbulence models into a finite difference, two- and three-dimensional Navier-Stokes Solver. Theories of turbulence modeling and the historical development of these theories are briefly investigated. Turbulence models that are defined by two partial differential equations, based on k-? and k-? models, having different correlations, constants and boundary conditions are selected to be adapted into the base solver. The basic equations regarding t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akdemir, “Development of an axisymmetric, turbulent and unstructured navier-stokes solver,” M.S. - Master of Science, Middle East Technical University, 2010.