Analysis of thin walled open section tapered beams using hybrid stress finite element method

Akman, Mehmet Nazım
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectional properties are computed using the flow analogy of the inter-connected elements which may have different thicknesses. Then another computer program calculates the displacements and stresses at the nodes along the beam. The results obtained are compared to the results taken from literature and commercial FEM program Nastran.