Ride comfort improvement by application of tuned mass dampers and lever type vibration isolators

Aydan, Göksu
In this study, the efficiency of linear and rotational tuned mass dampers (TMD) and lever type vibration isolators (LVI) in improving ride comfort is investigated based on a vehicle quarter-car model. TMDs reduce vibration levels by absorbing the energy of the system, especially at their natural frequencies. Both types of TMDs are investigated in the first part of this study. Although linear TMDs can be implemented more easily on suspension systems, rotational TMDs show better performance in reducing vibration levels; since, the inertia effect of rotational TMDs is higher than the linear TMDs. In order to obtain better results with TMDs, configurations with chain of linear TMDs are obtained in the second part of the study without changing the original suspension stiffness and damping coefficient. In addition to these, the effect of increasing the number of TMDs used in the chain configuration is investigated. Results show that performance deterioration at lower frequencies than wheel hop is reduced by using chain of TMDs. In the third part of this study, various configurations of LVIs with different masses are considered and significant attenuation of vibration amplitudes at both body bounce and wheel hop frequencies is achieved. Results show that TMDs improve ride comfort around wheel hop frequency while LVIs are quite efficient around body bounce frequency. Finally, parameter uncertainty due to aging of components and manufacturing defects are investigated.


Aydan, Goksu; Ciğeroğlu, Ender; BAŞLAMIŞLI, SELAHATTİN ÇAĞLAR (2010-07-24)
In this paper, performance of passive vibration isolators, namely rotational / linear tuned mass dampers (TMD) and lever type vibration isolators (LVI), are investigated under different configurations for optimal ride comfort. TMDs reduce vibration levels by absorbing the energy of the system, especially around natural frequencies with the help of viscous dampers. Two types of TMDs, rotational and linear, are investigated in this study. Although linear TMDs can be more easily implemented on suspension syste...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
Vibration reduction by using two tuned mass dampers with dry friction damping
Doğan, Muhammed Emin; Ciğeroğlu, Ender (null; 2019-02-20)
Vibration reduction of a single-degree-of-freedom system connected to two tuned mass dampers (TMDs) equipped with dry friction dampers is considered in this work. The system is subjected to sinusoidal base excitation. Parameters of TMDs are optimized to minimize the peak values of the response of the primary system. Harmonic balance method (HBM) is used to obtain the steady state solution of the three-degrees-of-freedom nonlinear system in frequency domain. Newton’s method with arc length continuation is ut...
Nonlinear dynamic analysis of a drivetrain composed of spur, helical and spiral bevel gears
Yavuz, Siar Deniz; Saribay, Zihni Burcay; Ciğeroğlu, Ender (Springer Science and Business Media LLC, 2020-06-01)
This paper proposes a dynamic model for the first time in order to investigate nonlinear time-varying dynamic behavior of a drivetrain including parallel axis gears (such as spur and helical gears) and intersecting axis gears (such as spiral bevel gears). Flexibilities of shafts and bearings are included in the dynamic model by the use of finite element modeling. Finite element models of shafts are coupled with each other by the mesh models of gear pairs including backlash nonlinearity and fluctuating mesh ...
Optimum Profile Modifications for the Minimization of Dynamic Transmission Error
ÖZTÜRK, VEYSEL YALIN; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2014-08-28)
An optimization study is performed target being the reduction of dynamic transmission error (DTE) for a selected operational range, where the operating torque and speed ranges are defined. For this purpose, two different models, i.e. a single degree of freedom (SDOF) lumped gear dynamics model and a multi-degree of freedom (MDOF) lumped model of a gear pair which is combined with shaft and bearing dynamics are employed. The differences between the optimization results obtained through loaded static transmis...
Citation Formats
G. Aydan, “Ride comfort improvement by application of tuned mass dampers and lever type vibration isolators,” M.S. - Master of Science, Middle East Technical University, 2010.