Ride comfort improvement by application of tuned mass dampers and lever type vibration isolators

Download
2010
Aydan, Göksu
In this study, the efficiency of linear and rotational tuned mass dampers (TMD) and lever type vibration isolators (LVI) in improving ride comfort is investigated based on a vehicle quarter-car model. TMDs reduce vibration levels by absorbing the energy of the system, especially at their natural frequencies. Both types of TMDs are investigated in the first part of this study. Although linear TMDs can be implemented more easily on suspension systems, rotational TMDs show better performance in reducing vibration levels; since, the inertia effect of rotational TMDs is higher than the linear TMDs. In order to obtain better results with TMDs, configurations with chain of linear TMDs are obtained in the second part of the study without changing the original suspension stiffness and damping coefficient. In addition to these, the effect of increasing the number of TMDs used in the chain configuration is investigated. Results show that performance deterioration at lower frequencies than wheel hop is reduced by using chain of TMDs. In the third part of this study, various configurations of LVIs with different masses are considered and significant attenuation of vibration amplitudes at both body bounce and wheel hop frequencies is achieved. Results show that TMDs improve ride comfort around wheel hop frequency while LVIs are quite efficient around body bounce frequency. Finally, parameter uncertainty due to aging of components and manufacturing defects are investigated.

Suggestions

Vibration reduction by using two tuned mass dampers with dry friction damping
Doğan, Muhammed Emin; Ciğeroğlu, Ender (null; 2019-02-20)
Vibration reduction of a single-degree-of-freedom system connected to two tuned mass dampers (TMDs) equipped with dry friction dampers is considered in this work. The system is subjected to sinusoidal base excitation. Parameters of TMDs are optimized to minimize the peak values of the response of the primary system. Harmonic balance method (HBM) is used to obtain the steady state solution of the three-degrees-of-freedom nonlinear system in frequency domain. Newton’s method with arc length continuation is ut...
APPLICATION OF TUNED MASS DAMPERS AND LEVER TYPE VIBRATION ISOLATOR TO THE QUARTER-CAR MODEL IN ORDER TO INCREASE RIDE COMFORT
Aydan, Goksu; Ciğeroğlu, Ender; BAŞLAMIŞLI, SELAHATTİN ÇAĞLAR (2010-07-24)
In this paper, performance of passive vibration isolators, namely rotational / linear tuned mass dampers (TMD) and lever type vibration isolators (LVI), are investigated under different configurations for optimal ride comfort. TMDs reduce vibration levels by absorbing the energy of the system, especially around natural frequencies with the help of viscous dampers. Two types of TMDs, rotational and linear, are investigated in this study. Although linear TMDs can be more easily implemented on suspension syste...
Shape optimization of wheeled excavator lower chassis
Özbayramoğlu, Erkal; Söylemez, Eres; Department of Mechanical Engineering (2008)
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by ...
Modeling and experimental evaluation of variable speed pump and valve controlled hydraulic servo drives
Çalışkan, Hakan; Balkan, Raif Tuna; Department of Mechanical Engineering (2009)
In this thesis study, a valveless hydraulic servo system controlled by two pumps is investigated and its performance characteristics are compared with a conventional valve controlled system both experimentally and analytically. The two control techniques are applied on the position control of a single rod linear actuator. In the valve controlled system, the flow rate through the actuator is regulated with a servovalve; whereas in the pump controlled system, two variable speed pumps driven by servomotors reg...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
Citation Formats
G. Aydan, “Ride comfort improvement by application of tuned mass dampers and lever type vibration isolators,” M.S. - Master of Science, Middle East Technical University, 2010.