Dehydration of alcohol solutions obtained from a solvent recovery process by pervaporation

Büküşoğlu, Emre
Solvent recovery is gaining importance in the chemical production processes to reduce the costs and because of environmental concerns. Therefore separation schemes for recovery and recycle of solvents used in printing and packaging industry were developed. However, a low value by-product, mainly ethyl alcohol and isopropanol, is obtained during the solvent recovery process. If the water concentration of this mixture is decreased below 0.1% by weight, the value of it increases significantly. To dehydrate this stream, a pervaporation-adsorption separation scheme is developed in this study. The effect of pervaporation process parameters, such as temperature, feed flow rate, permeate side pressure, feed water and ethyl acetate concentration, on the performance of the PERVAP 2211 and 2201 membranes of Sulzer Chem-tech® using the real industrial by-product solution obtained from a local company are investigated. Pervaporation tests were conducted using a home made experimental setup equipped with 148 cm2 rectangular shaped membrane module. Permeates obtained from these experiments were analyzed using a gas chromatograph equipped with FID and the water concentration of the feed solutions were analyzed using Karl-Fisher titration. Besides, adsorption studies were conducted using zeolite 3A in a fixed bed column. As a result of this study, PERVAP 2201 membranes showed higher fluxes with a slightly lower permeate water concentration compared to PERVAP 2211 at the at ranges studied. The increase in the pervaporation performance was observed with an increase in the temperature, permeate side vacuum and feed flow rate over the membrane. Therefore, concentrated-mode experiments were conducted at 70°C, 2 torr permeate side pressure and 1.6 L/min of feed flow rate using the findings of the parametric studies and the retentate of this experiments were further dehydrated using liquid phase adsorption. Finally, the water concentration of the solution was decreased to 0.04% by weight.


Control and simulation studies for a multicomponent batch packed distillation column
Ceylan, Hatice; Özgen, Canan; Department of Chemical Engineering (2007)
During the last decades, batch distillation is preferably used with an increasing demand over continuous one, to separate fine chemicals in chemical and petroleum industries, due to its advantages like, flexibility and high product purity. Consequently, packed distillation columns, with newly generated packing materials, are advantageous compared to plate columns because of their smaller holdups, resistivity to corrosive materials and their higher separation efficiencies. Also, in many industrial applicatio...
Steam reforming of ethanol for hydrogen production using Cu-MCM41 and Ni-MCM41 type mesoporous catalytic materials
Özdoğan, Ekin; Doğu, Timur; Department of Chemical Engineering (2007)
The world’s being alerted to the global warming danger and the depletion of fossil fuel resources, has increased the importance of the clean and renewable hydrogen energy. Bioethanol has high potential to be used as a resource of hydrogen since it is a non-petroleum feedstock and it is able to produce hydrogen rich mixture by steam reforming reactions. Discovery of mesoporous MCM-41 type high surface area silicate-structured materials with narrow pore size distributions (20-100 Å) and high surface areas (up...
Sorption enhanced ethanol reforming over cobalt, nickel incorporated mcm-41 for hydrogen production
Gündüz, Seval; Doğu, Timur; Department of Chemical Engineering (2011)
The interest in hydrogen as a clean energy source has increased due to depletion of limited fossil resources and environmental impact related to CO2 emissions. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming reaction, has shown excellent potential with CO2 neutrality. However, steam reforming of ethanol reaction is a highly complex process including many side reactions which decrease hydrogen yield and have a negative effect on process economy. Also, th...
Syngas cleaning for coal to methanol demo plant - H2S and COS removal
Argonul, Aykut; Er, Omer Orcun; Kayahan, Ufuk; Unlu, Alper; Ziypak, Mustafa (Informa UK Limited, 2020-01-31)
Syngas cleaning, especially the removal of COS and H2S, is a crucial step in the production of valuable chemicals from coal. As a part of the Tuncbilek Coal to Methanol project, a gas cleaning demo plant has been built. The aim of this paper is to disseminate the experience gained from these demo plant experiments concerning the performance of the gasifier and syngas cleaning demo-plant, especially about the removal of sulfur compounds. Additionally, some practical recommendations regarding the design and o...
Carbon dioxide removal in steam reforming : adsorption of CO2 onto hydrotalcite and activated soda
Fıçıcılar, Berker; Doğu, Timur; Department of Chemical Engineering (2004)
Conversion of natural gas and other light hydrocarbons via steam reforming is currently the major process for hydrogen production. However, conventional hydrogen production technologies are not cost effective and therefore, cost is the biggest impediment to use hydrogen in fuel cell applications. In order to optimize and overcome cost problems in hydrogen production, sorption and membrane enhanced reaction processes are the two novel technologies for in situ operation of reforming and removal of carbon diox...
Citation Formats
E. Büküşoğlu, “Dehydration of alcohol solutions obtained from a solvent recovery process by pervaporation,” M.S. - Master of Science, Middle East Technical University, 2010.