Carbon dioxide removal in steam reforming : adsorption of CO2 onto hydrotalcite and activated soda

Fıçıcılar, Berker
Conversion of natural gas and other light hydrocarbons via steam reforming is currently the major process for hydrogen production. However, conventional hydrogen production technologies are not cost effective and therefore, cost is the biggest impediment to use hydrogen in fuel cell applications. In order to optimize and overcome cost problems in hydrogen production, sorption and membrane enhanced reaction processes are the two novel technologies for in situ operation of reforming and removal of carbon dioxide. Adsorption of carbon dioxide onto activated hydrotalcite and activated soda, obtained from either trona or NaHCO3, had been studied using a stainless steel packed bed tubular reactor as a function of temperature. Adsorption of CO2 in the presence and absence of steam onto activated hydrotalcite was conducted in the temperature range of 400-527 oC, whereas sorption studies with activated soda were performed for 80 to 152 oC in the presence of steam. Also, two-parameter deactivation model was developed to justify the experimental data and predictions of the breakthrough curves by deactivation model indicated a good agreement with the experimental results. In order to obtain physical properties of the sorbents, untreated and calcined sorbents were characterized by using TGA, B.E.T (N2 adsorption), and Hg porosimetry techniques. When hydrotalcite was used as the sorbent, total adsorption capacity of the material reduced from 1.18 mol/kg to 0.66 mol/kg as the temperature was increased from 400 oC to 527 oC. On the other hand, activated soda exhibited a total adsorption capacity 1.15 to 0.68 mol/kg for a temperature change from 80 to 152 oC. For high temperature removal of CO2, hydrotalcite and its promoted forms (using K2CO3 or Na2CO3) are pretty good sorbents to be used in single step hydrogen production processes, such as SERP. On the other hand, activated soda


Process development for continuous photofermentative hydrogen production
Boran, Efe; Eroğlu, İnci; Özgür, Ebru; Department of Chemical Engineering (2011)
By the integration of dark and photo fermentative hydrogen production processes, higher yields of hydrogen can be obtained from biomass. In the first step, biomass is utilized for hydrogen production by dark fermentation and in the second step, the effluent of dark fermentation is further utilized for hydrogen production by photofermentation using photosynthetic purple non-sulfur bacteria. The purpose of this study was to develop a solar pilot scale tubular photobioreactor (PBR) for continuous photo ferment...
Development of organic-inorganic composite membranes for fuel cell applications
Erdener, Hülya; Baç, Nurcan; Department of Chemical Engineering (2007)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is t...
Removal of hydrogen sulfide by regenerable metal oxide sorbents
Karayılan, Dilek; Doğu, Timur; Department of Chemical Engineering (2004)
High-temperature desulfurization of coal-derived fuel gases is an essential process in advanced power generation technologies. It may be accomplished by using metal oxide sorbents. Among the sorbents investigated CuO sorbent has received considerable attention. However, CuO in uncombined form is readily reduced to copper by the H2 and CO contained in fuel gases which lowers the desulfurization efficiency. To improve the performance of CuO-based sorbents, they have been combined with other metal oxides, form...
Sorption enhanced ethanol reforming over cobalt, nickel incorporated mcm-41 for hydrogen production
Gündüz, Seval; Doğu, Timur; Department of Chemical Engineering (2011)
The interest in hydrogen as a clean energy source has increased due to depletion of limited fossil resources and environmental impact related to CO2 emissions. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming reaction, has shown excellent potential with CO2 neutrality. However, steam reforming of ethanol reaction is a highly complex process including many side reactions which decrease hydrogen yield and have a negative effect on process economy. Also, th...
Chemical vapor deposition of boron carbide
Karaman, Mustafa; Özbelge, Önder; Department of Chemical Engineering (2007)
Boron carbide was produced on tungsten substrate in a dual impinging-jet CVD reactor from a gas mixture of BCl3, CH4, and H2. The experimental setup was designed to minimise the effect of mass transfer on reaction kinetics, which, together with the on-line analysis of the reactor effluent by FTIR, allowed a detailed kinetic investigation possible. The phase and morphology studies of the products were made by XPS, XRD,micro hardness and SEM methods. XPS analysis showed the existence of chemical states attrib...
Citation Formats
B. Fıçıcılar, “Carbon dioxide removal in steam reforming : adsorption of CO2 onto hydrotalcite and activated soda,” M.S. - Master of Science, Middle East Technical University, 2004.