Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the problem of lifting fibrations on algebraic surfaces
Download
index.pdf
Date
2010
Author
Kaya, Celalettin
Metadata
Show full item record
Item Usage Stats
190
views
89
downloads
Cite This
In this thesis, we first summarize the known results about lifting algebraic surfaces in characteristic p > 0 to characteristic zero, and then we study lifting fibrations on these surfaces to characteristic zero. We prove that fibrations on ruled surfaces, the natural fibration on Enriques surfaces of classical type, the induced fibration on K3-surfaces covering these types of Enriques surfaces, and fibrations on certain hyperelliptic and quasi-hyperelliptic surfaces lift. We also obtain some fragmentary results concerning the smooth isotrivial fibrations and the fibrations on surfaces of Kodaira dimension 1.
Subject Keywords
Mathematics.
URI
http://etd.lib.metu.edu.tr/upload/12612075/index.pdf
https://hdl.handle.net/11511/19760
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On equivariant Serre problem for principal bundles
Biswas, Indranil; Dey, Arijit; Poddar, Mainak (World Scientific Pub Co Pte Lt, 2018-08-01)
Let E-G be a Gamma-equivariant algebraic principal G-bundle over a normal complex affine variety X equipped with an action of Gamma, where G and Gamma are complex linear algebraic groups. Suppose X is contractible as a topological Gamma-space with a dense orbit, and x(0) is an element of X is a Gamma-fixed point. We show that if Gamma is reductive, then E-G admits a Gamma-equivariant isomorphism with the product principal G-bundle X x rho E-G(x(0)), where rho : Gamma -> G is a homomorphism between algebraic...
Isomorphism classes of elliptic curves over finite fields of characteristic two
Kırlar, Barış Bülent; Akyıldız, Ersan; Department of Mathematics (2005)
In this thesis, the work of Menezes on the isomorphism classes of elliptic curves over finite fields of characteristic two is studied. Basic definitions and some facts of the elliptic curves required in this context are reviewed and group structure of elliptic curves are constructed. A fairly detailed investigation is made for the isomorphism classes of elliptic curves due to Menezes and Schoof. This work plays an important role in Elliptic Curve Digital Signature Algorithm. In this context, those isomorphi...
On the moduli spaces of fiber bundles of curves of genus >= 2
Onsiper, H (Springer Science and Business Media LLC, 2000-11-02)
We determine the moduli spaces parametrizing analytic fiber bundles of curves of genus g greater than or equal to 2 over curves of genus g(b) > (g + 1)/2.
On degenerations of fiber spaces of curves of genus >=2
Onsiper, H; Sertoz, S (Springer Science and Business Media LLC, 1997-10-01)
In this note, we show that for surfaces admitting suitable fibralions, any given degeneration X/Delta is bimeromorphic to a fiber space over a curve Y/Delta and we apply this result to the study of the degenerate fiber.
Application of the boundary element method to parabolic type equations
Bozkaya, Nuray; Tezer-Sezgin, Münevver; Department of Mathematics (2010)
In this thesis, the two-dimensional initial and boundary value problems governed by unsteady partial differential equations are solved by making use of boundary element techniques. The boundary element method (BEM) with time-dependent fundamental solution is presented as an efficient procedure for the solution of diffusion, wave and convection-diffusion equations. It interpenetrates the equations in such a way that the boundary solution is advanced to all time levels, simultaneously. The solution at a requi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaya, “On the problem of lifting fibrations on algebraic surfaces,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.