Forced coupled vibrations of beams

Özdemir, Özlem


Forced vibrations of functionally graded annular and circular plates by domain-boundary element method
Eshraghi, Iman; Dağ, Serkan (Wiley, 2020-08-01)
Axi-symmetric dynamic response of functionally graded circular and annular Mindlin plates with through-the-thickness variations of physical properties is investigated by a new domain-boundary element formulation. Three governing partial differential equations of motion of the inhomogeneous plate are converted to integral equations by utilizing the static fundamental solutions of the displacement components. These integral equations are then spatially discretized by dividing the entire domain into a number o...
Yaman, Yavuz (Elsevier BV, 2002-2)
An exact analytical method is presented for the analysis of forced vibrations of uniform, open-section, single- and multi-bay periodic channels. The centre of gravity and the shear centre of the channel cross-sections do not coincide, and hence the flexural vibrations in two mutually perpendicular directions and the torsional vibrations are all coupled. The ends of the channels and the periodic intermediate supports are modelled with springs having finite flexural and torsional stiffnesses. Single-point for...
Forced Oscillation of Second-Order Impulsive Differential Equations with Mixed Nonlinearities
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-07-08)
In this paper we give new oscillation criteria for a class of second-order mixed nonlinear impulsive differential equations having fixed moments of impulse actions. The method is based on the existence of a nonprincipal solution of a related second-order linear homogeneous equation.
Forced vibration analysis of generally laminated composite beams using domain boundary element method
Ahmed, Zubair; Dağ, Serkan; Department of Mechanical Engineering (2018)
Forced dynamic response of generally laminated composite beam is analyzed by boundary element method. Static fundamental solutions are used as weight functions in the weighted residual statements. The use of static fundamental solutions gives rise to a new formulation named as Domain Boundary Element Method. Displacement field of the generally laminated composite beam is written in accordance with first order shear deformation theory and equations of motion are derived using Hamilton’s principle. Developed ...
Forced convective flow and heat transfer through a porous channel
Bilgin, A. Birol; Yüncü, Hafit; Department of Mechanical Engineering (1991)
Citation Formats
Ö. Özdemir, “Forced coupled vibrations of beams,” Middle East Technical University, 1998.