Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Forced vibration analysis of generally laminated composite beams using domain boundary element method
Download
index.pdf
Date
2018
Author
Ahmed, Zubair
Metadata
Show full item record
Item Usage Stats
294
views
119
downloads
Cite This
Forced dynamic response of generally laminated composite beam is analyzed by boundary element method. Static fundamental solutions are used as weight functions in the weighted residual statements. The use of static fundamental solutions gives rise to a new formulation named as Domain Boundary Element Method. Displacement field of the generally laminated composite beam is written in accordance with first order shear deformation theory and equations of motion are derived using Hamilton’s principle. Developed formulation includes the Poisson’s effect as well as influence of rotary inertia and shear deformation. Bending, extensional and torsional response couplings, due to orthotropic nature of the problem, are included in the formulation. Domain integrals, in the integral formulation of the problem, are evaluated by discretizing the domain and using interpolation functions. Houbolt method is used for solving the resulting system of equations. Dynamic response, obtained via Houbolt method, is verified by comparison with analytical solution available for an homogeneous isotropic Timoshenko beam. Dynamic response of generally laminated composite beams is studied under the action of time based excitations such as concentrated step, harmonic, impulsive and uniformly distributed step loads. Influences of fiber angle in each lamina and stacking arrangement on temporal variation of deflections and longitudinal normal stress have been studied in parametric analyses. It has been demonstrated that the developed technique is an accurate and effective alternative for forced vibration analysis of generally laminated composites.
Subject Keywords
Vibration.
,
Composite construction.
,
Composite materials.
URI
http://etd.lib.metu.edu.tr/upload/12622516/index.pdf
https://hdl.handle.net/11511/27452
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Delamination analysis by using cohesive interface elements in laminated composites
Gözlüklü, Burak; Parnas, Kemal Levend; Department of Mechanical Engineering (2009)
Finite element analysis using Cohesive Zone Method (CZM) is a commonly used method to investigate delamination in laminated composites. In this study, two plane strain, zero-thickness six-node quadratic (6-NQ) and four-node linear (4-NL) interface elements are developed to implement CZM. Two main approaches for CZM formulation are categorized as Unified Mode Approach (UMA) and Separated Mode Approach (SMA), and implemented into 6-NQ interface elements to model a double cantilever beam (DCB) test of a unidir...
Numerical investigation of delamination in L-shaped cross-ply composite bracket
Gümüş, M.; Gözlüklü, B.; Çöker, Demirkan (null; 2014-01-01)
Interlaminar normal stresses are induced with interlaminar shear stresses leading to mixed-mode delamination (MMD) in curved cross-ply composite laminates. Dynamic mixed-mode delamination is studied using explicit finite element method and Cohesive Zone Modelling Dynamic response of the specimen is compared with the experiments.
Snap-through buckling analyses of composite shallow spherical shells
Akkas, N; Toroslu, R (1999-10-01)
The purpose of this work is to present some numerical results on nonlinear, snap-through buckling of shallow spherical shells made of laminated composite materials under general static loading. Isotropic shells are covered as a special case of the general problem. A special-purpose finite-difference computer program has been developed. Moreover, the general-purpose computer program ANSYS has also been used. Effects of various material properties on the nonlinear behavior of the shells are investigated. One ...
Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer (2008-01-01)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method considers the whole domain as one continuous computational domain, eliminating the necessity to check the starting and ending positions of the decomposition zone. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers that...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ahmed, “Forced vibration analysis of generally laminated composite beams using domain boundary element method,” M.S. - Master of Science, Middle East Technical University, 2018.