A general pseudospectral formulation of a class of Sturm-Liouville Systems

Download
2010
Alıcı, Haydar
In this thesis, a general pseudospectral formulation for a class of Sturm-Liouville eigenvalue problems is consructed. It is shown that almost all, regular or singular, Sturm-Liouville eigenvalue problems in the Schrödinger form may be transformed into a more tractable form. This tractable form will be called here a weighted equation of hypergeometric type with a perturbation (WEHTP) since the non-weighted and unperturbed part of it is known as the equation of hypergeometric type (EHT). It is well known that the EHT has polynomial solutions which form a basis for the Hilbert space of square integrable functions. Pseudospectral methods based on this natural expansion basis are constructed to approximate the eigenvalues of WEHTP, and hence the energy eigenvalues of the Schrödinger equation. Exemplary computations are performed to support the convergence numerically.

Suggestions

A new time-domain boundary element formulation for generalized models of viscoelasticity
Akay, Ahmet Arda; Gürses, Ercan; Göktepe, Serdar (2023-05-01)
The contribution is concerned with the novel algorithmic formulation for generalized models of viscoelasticity under quasi-static conditions within the framework of the boundary element method (BEM). The proposed update algorithm is constructed for a generic rheological model of linear viscoelasticity that can either be straightforwardly simplified to recover the basic Kelvin and Maxwell models or readily furthered towards the generalized models of viscoelasticity through the serial or parallel extensions. ...
A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms
Yücel, Hamdullah; BENNER, Peter (2015-11-01)
In this paper, we study the numerical solution of optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used as a discretization method. We use a residual-based error estimator for the state and the adjoint variables. An adaptive mesh refinement indicated by a posteriori error estimates is applied. The arising saddle point system...
An efficient solution of the generalized eigenvalue problems for planar transmission lines
Prakash, VVS; Kuzuoğlu, Mustafa; Mittra, R (Wiley, 2001-11-05)
This paper presents an efficient solution for solving the generalized eigenvalue equation arising in the finite-element (FE) formulation of propagation characterization of planar transmission-line structures. A two-dimensional (2-D) finite-element method (FEM) is used for analyzing the uniform planar transmission lines. The Arnoldi algorithm is used in conjunction with the multifrontal decomposition of the system matrix for solving the eigensystem. Convergence is typically obtained within a few iterations o...
Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
AYDIN, AYHAN; Karasözen, Bülent (2008-09-20)
In this paper, the multisymplectic formulation of the CMKdV(complex modified Korteweg-de Vries equation) is derived. Based on the multisymplectic formulation, the eight-point multisymplectic Preissman scheme and a linear-nonlinear multisymplectic splitting scheme are developed. Both methods are compared numerically with respect to the conservation of local and global quantities of the CMKdV equation.
An empirical method for the second viral coefficients of non-standard fluids
Kis, Konrad; Orbey, Hasan (Elsevier BV, 1989-9)
A new empirical method is proposed for the extension of Pitzer-Curl type correlations of the second virial coefficient to non-standard fluids as define
Citation Formats
H. Alıcı, “A general pseudospectral formulation of a class of Sturm-Liouville Systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.