A general pseudospectral formulation of a class of Sturm-Liouville Systems

Alıcı, Haydar
In this thesis, a general pseudospectral formulation for a class of Sturm-Liouville eigenvalue problems is consructed. It is shown that almost all, regular or singular, Sturm-Liouville eigenvalue problems in the Schrödinger form may be transformed into a more tractable form. This tractable form will be called here a weighted equation of hypergeometric type with a perturbation (WEHTP) since the non-weighted and unperturbed part of it is known as the equation of hypergeometric type (EHT). It is well known that the EHT has polynomial solutions which form a basis for the Hilbert space of square integrable functions. Pseudospectral methods based on this natural expansion basis are constructed to approximate the eigenvalues of WEHTP, and hence the energy eigenvalues of the Schrödinger equation. Exemplary computations are performed to support the convergence numerically.


Accurate numerical bounds for the spectral points of singular Sturm-Liouville problems over -infinity < x <infinity
Taşeli, Hasan (2000-03-01)
The eigenvalues of singular Sturm-Liouville problems are calculated very accurately by obtaining rigorous upper and lower bounds. The singular problem over the unbounded domain (-infinity,infinity) is considered as the limiting case of an associated problem on the finite interval [-l,l]. It is then proved that the eigenvalues of the resulting regular systems satisfying Dirichlet and Neumann boundary conditions provide, respectively, upper and lower bounds converging monotonically to the required asymptotic ...
A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms
Yücel, Hamdullah; BENNER, Peter (2015-11-01)
In this paper, we study the numerical solution of optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used as a discretization method. We use a residual-based error estimator for the state and the adjoint variables. An adaptive mesh refinement indicated by a posteriori error estimates is applied. The arising saddle point system...
Inverse Sturm-Liouville problems with pseudospectral methods
Altundag, H.; Boeckmann, C.; Taşeli, Hasan (2015-07-03)
In this paper a technique to obtain a first approximation for singular inverse Sturm-Liouville problems with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (-infinity, infinity), is treated by considering numerically the asymptotic limit of the associated problem on a finite interval (-L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical regular ones and needs regularization techniques. Direct computation of eigen...
An efficient solution of the generalized eigenvalue problems for planar transmission lines
Prakash, VVS; Kuzuoğlu, Mustafa; Mittra, R (Wiley, 2001-11-05)
This paper presents an efficient solution for solving the generalized eigenvalue equation arising in the finite-element (FE) formulation of propagation characterization of planar transmission-line structures. A two-dimensional (2-D) finite-element method (FEM) is used for analyzing the uniform planar transmission lines. The Arnoldi algorithm is used in conjunction with the multifrontal decomposition of the system matrix for solving the eigensystem. Convergence is typically obtained within a few iterations o...
An empirical method for the second viral coefficients of non-standard fluids
Kis, Konrad; Orbey, Hasan (Elsevier BV, 1989-9)
A new empirical method is proposed for the extension of Pitzer-Curl type correlations of the second virial coefficient to non-standard fluids as define
Citation Formats
H. Alıcı, “A general pseudospectral formulation of a class of Sturm-Liouville Systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.