Optimum design of reinforced concrete plane frames using harmony search algorithm

Akın, Alper
In this thesis, the optimum design algorithm is presented for reinforced concrete special moment frames. The objective function is considered as the total cost of reinforced concrete frame which includes the cost of concrete, formwork and reinforcing steel bars. The cost of any component is inclusive of material, fabrication and labor. The design variables in beams are selected as the width and the depth of beams in each span, the diameter and the number of longitudinal reinforcement bars along the span and supports. In columns the width and the depth of the column section, the number and the diameter of bars in x and y directions are selected as design variables. The column section database is prepared which includes the width and height of column section, the diameter and the number of reinforcing bars in the column section is constructed. This database is used by the design algorithm to select appropriate sections for the columns of the frame under consideration. The design constraints are implemented from ACI 318-05 which covers the flexural and shear strength, serviceability, the minimum and maximum steel percentage for flexural and shear reinforcement, the spacing requirements for the reinforcing bars and the upper and lower bound requirements for the concrete sections. The optimum design problem formulated according to ACI 318-05 provisions with the design variables mentioned above turns out to be a combinatorial optimization problem. The solution of the design problem is obtained by using the harmony search algorithm (HS) which is one of the recent additions to meta-heuristic optimization techniques which are widely used in obtaining the solution of combinatorial optimization problems. The HS algorithm is quite simple and has few parameters to initialize and consists of simple steps which make it easy to implement. Number of design examples is presented to demonstrate the efficiency and robustness of the optimum design algorithm developed.
Citation Formats
A. Akın, “Optimum design of reinforced concrete plane frames using harmony search algorithm,” Ph.D. - Doctoral Program, 2010.