Ride model and sımulation of a backhoe-loader

Download
2010
Göztaş, Durmuş Ali
The objective of this study is to present a dynamic model of a backhoe-loader including cab dynamics in order to simulate the vibration levels transmitted to the operator. For this purpose, analytical solutions of the cab and the machine are developed by deriving the equations of motion of the system and the state space forms of the solution are implemented in the commercially available simulation software, MATLAB/Simulink. In addition to the analytical solution, a model is developed using the physical modeling toolboxes of MATLAB/SimMechanics. Cab model developed in SimMechanics is extended to simulate whole machine dynamics by inserting machine body and tire parameters. Vibration data is acquired from the machine for experimental validation of the models. Analytical and SimMechanics solution are evaluated by comparing the seat acceleration results for the same inputs. Furthermore, simulation results obtained from the models and the measurement results are found to be in agreement in both time and frequency domain.

Suggestions

Effect of solid state power amplifier nonlinearity on various phase shift keying modulation schemes
Dudak, Celal; Koç, Arzu; Department of Electrical and Electronics Engineering (2005)
This study concentrates on the performance evaluation of a specific modulation scheme under nonlinear operation. This modulation scheme is the phase shift keying (PSK) modulation, exemplified by the special cases of BPSK, QPSK, OQPSK, p/4-QPSK. The specific nonlinear block is chosen to be the solid state power amplifier (SSPA) structure whose simulation model is the Rapp model. Varying transmitter filter characteristic and one of the power amplifier parameters constitute the main methodology of simulations....
Platform motion disturbances decoupling by means of inertial sensors for a motion stabilized gimbal
Mutlu, Deniz; Balkan, Raif Tuna; Platin, Bülent Emre; Department of Mechanical Engineering (2015)
In this study, a method is developed to overcome platform motion based disturbances resulting from kinematic and dynamic interactions between platform and gimbal system. The method is confined to using underlying non-linear relations in order to increase performance of the system in nearly all of its motion envelope. Sensor requirements and measurements methods are also stated for the developed method. In order to simulate real system conditions, an identification procedure is applied on the system whose ou...
Force and motion trajectory tracking control of flexible joint robots
Ider, SK (2000-03-01)
An inverse dynamics control algorithm for constrained flexible-joint robots is developed. It is shown that in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because the control torques do not have an instantaneous effect on the end-effector contact forces and accelerations, due to the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. Joint s...
Dynamic modelling of a backhoe-loader
Kılıç, Boran; Balkan, Raif Tuna; Department of Mechanical Engineering (2009)
The aim of this study is to develop a dynamic model of the loader system of a backhoe-loader. Rigid bodies and joints in the loader mechanism and loader hydraulic system components are modelled and analyzed in the same environment using the physical modelling toolboxes inside the commercially available simulation software, MATLAB/Simulink. Interaction between the bodies and response of the hydraulic system are obtained by co-operating the mechanical and hydraulic analyses. System variables such as pressure,...
Camera trajectory estimation for indoor robot odometry using stereo images and inertial measurements
Horasan, Anıl; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2016)
In this study, the development and implementation of an algorithm for stereo visual-inertial odometry are described. The study spans the complete process from analyzing the sensory data to the development of a robot odometry algorithm. The criteria for indoor visual-inertial odometry include using low-cost sensor systems, having an error less than five percent of the movement regardless of the distance covered, and building a robust algorithm in the presence of geometric and photometric invariances as well ...
Citation Formats
D. A. Göztaş, “Ride model and sımulation of a backhoe-loader,” M.S. - Master of Science, Middle East Technical University, 2010.