Ammonium and lead exchange in clinoptilolite zeolite column

Bahaalddin, Ahmad Dh
Wastewaters resulted from anthropogenic influence can encompass a wide range of potential contaminants and concentrations. There are numerous procedures that can be used to clear out wastewaters depending on the type and extent of contamination, however; disposal of pollutants from wastewaters in industrial scale is a difficult and costly problem. In this study, the use of ion exchange theory utilizing natural Turkish clinoptilolite zeolite from Gördes-Manisa as ion exchange resins in down-flow column mode is investigated. The clinoptilolite with particle size range of 0.25-0.50 mm is used in the removal of lead Pb2+ and ammonium NH4+ ions from aqueous solutions. The aim of the study is to set up the conditions under which clinoptilolite may be used in an economical and efficient approach in the removal process. Experiments were divided into two sets: binary studies, and ternary studies, and the effects of conditioning clinoptilolite with NaCl solution, flow rate, and initial concentration of the solutions on the removal behavior were investigated. In binary studies, results showed that increasing the loading volumetric flow rate resulted in decreasing the breakthrough capacity and the column efficiency, while the total capacity remained constant. The maximum total capacity was determined as 1.16 meq/g of zeolite for NH4+, and 1.1 meq/g of zeolite for Pb2+ and these values were close to each other and to the sodium content of Na-form of pretreated clinoptilolite (1.16 meq/g of zeolite). In addition, by decreasing the initial contaminant concentration, an increase in breakthrough capacity and column efficiency was observed. In ternary studies, the results showed that the removal of Pb2+ and NH4+ ions are dependent on the flow rate, in which at moderately low flow rate, a higher ion exchange capacity is yielded. That was explained as at higher flow rates, the retention time was insufficient for the ion exchange process to take place completely between clinoptilolite and lead and ammonium ions. Thus, a competition between Pb2+ and NH4+ ions for the exchange sites on clinoptilolite was observed and this competition was in favor of lead ions. Consequently, it was observed that the clinoptilolite zeolite has affinity for both Pb2+ and NH4+ ions. However, the affinity of clinoptilolite for lead ions is higher than that for ammonium ions. Therefore, the cations selectivity for clinoptilolite according to their affinity is determined as the following sequence: NH4+ > Pb2+ > Na+.


Biodegradation of Chlorobenzene, 1,2-Dichlorobenzene, and 1,4-Dichlorobenzene in the Vadose Zone
Kurt, Zöhre (2013-07-02)
Much of the microbial activity in nature takes place at interfaces, which are often associated with redox discontinuities. One example is the oxic/anoxic interface where polluted groundwater interacts with the overlying vadose zone. We tested whether microbes in the vadose zone can use synthetic chemicals as electron donors and thus protect the overlying air and buildings from groundwater pollutants. Samples from the vadose zone of a site contaminated with chlorobenzene (CB), 1,2-dichlorobenzene (12DCB), an...
Ocean acidification research in the Mediterranean Sea: Status, trends and next steps
Hassoun, Abed El Rahman; Bantelman, Ashley; Canu, Donata; Comeau, Steeve; Galdies, Charles; Gattuso, Jean-Pierre; Giani, Michele; Grelaud, Michael; Hendriks, Iris Eline; IBELLO, VALERİA; Idrissi, Mohammed; Krasakopoulou, Evangelia; Shaltout, Nayrah; Solidoro, Cosimo; Swarzenski, Peter W. W.; Ziveri, Patrizia (2022-09-01)
Ocean acidification (OA) is a serious consequence of climate change with complex organism-to-ecosystem effects that have been observed through field observations but are mainly derived from experimental studies. Although OA trends and the resulting biological impacts are likely exacerbated in the semi-enclosed and highly populated Mediterranean Sea, some fundamental knowledge gaps still exist. These gaps are at tributed to both the uneven capacity for OA research that exists between Mediterranean countries,...
Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion
Androga, Dominic Deo; Ozgur, Ebru; EROĞLU, İNCİ; Gündüz, Ufuk; Yucel, Meral (2012-11-01)
One of the challenges in the development of integrated dark and photofermentative biological hydrogen production systems is the presence of ammonium ions in dark fermentation effluent (DFE). Ammonium strongly inhibits the sequential photofermentation process, and so its removal is required for successful process integration. In this study, the removal of ammonium ions from molasses DFE using a natural zeolite (clinoptilolite) was investigated. The samples were treated with batch suspensions of Na-form clino...
The Effects of type and amount of organically modified montmorillonites on thermal degradation behavior and mechanical properties of poly(lactic acid)
Özdemir, Esra; Hacaloğlu, Jale; Tinçer, Teoman; Department of Polymer Science and Technology (2014)
Biodegradable polymers have gained considerable interest as a consequence of significant environmental friendly properties like biocompatibility and ability to synthesis from renewable resources. Even though many biodegradable polymers present comparable properties with petrochemical polymers, there are still many technical barriers like poor thermal resistance, and/or mechanical properties. To overcome these drawbacks, generally, nano-sized materials are incorporated into the continuous matrix. Therefore, ...
Biodegradation of cis-Dichloroethene and Vinyl Chloride in the Capillary Fringe
Kurt, Zöhre; Spain, Jim C. (2014-11-18)
Volatile chlorinated compounds are major pollutants in groundwater, and they pose a risk of vapor intrusion into buildings. Vapor intrusion can be prevented by natural attenuation in the vadose zone if biodegradation mechanisms can be established. In this study, we tested the hypothesis that bacteria can use cis-dichloroethene (cis-DCE) or vinyl chloride (VC) as an electron donor in the vadose zone. Anoxic water containing cis-DCE or VC was pumped continuously beneath laboratory columns that represented the...
Citation Formats
A. D. Bahaalddin, “Ammonium and lead exchange in clinoptilolite zeolite column,” M.S. - Master of Science, Middle East Technical University, 2010.