Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion

2012-11-01
Androga, Dominic Deo
Ozgur, Ebru
EROĞLU, İNCİ
Gündüz, Ufuk
Yucel, Meral
One of the challenges in the development of integrated dark and photofermentative biological hydrogen production systems is the presence of ammonium ions in dark fermentation effluent (DFE). Ammonium strongly inhibits the sequential photofermentation process, and so its removal is required for successful process integration. In this study, the removal of ammonium ions from molasses DFE using a natural zeolite (clinoptilolite) was investigated. The samples were treated with batch suspensions of Na-form clinoptilolite. The ammonium ion concentration could be reduced from 7.60 mM to 1.60 mM and from 12.30 mM to 2.40 mM for two different samples. Photofermentative hydrogen production on treated and untreated molasses DFE samples were investigated in batch photo-bioreactors by an uptake hydrogenase deleted (hup(-)) mutant strain of Rhodobacter capsulotus. Maximum hydrogen productivities of 1.11 mmol H-2/L-c.h and 1.16 mmol H-2/L-c.h and molar yields of 79% and 90% were attained in the treated DFE samples, while the untreated samples resulted in no hydrogen production. The results showed that ammonium ions in molasses DFE could be effectively removed using clinoptilolite by applying a cost-effective, simple batch process. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent
Uyar, Basar; Schumacher, Matthias; Gebicki, Jakub; Modigell, Michael (2009-08-01)
Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydr...
Photofermentative hydrogen production from molasses in tubular photobioreactor with pH control
Oflaz, Fatma Betül; Koku, Harun; Department of Chemical Engineering (2019)
Biological hydrogen production has the potential to supply hydrogen from various wastes as feedstock and operation under ambient conditions. In order to obtain cost effective production, photobioreactors (PBRs) that can operate for long durations while utilizing waste are necessary. Two primary issues limiting the duration are decrease in pH and the non-optimal C/N ratio. The main aim of this study was to construct and operate a pH control system for a pilot scale photobioreactor (20 L) to achieve prolonged...
Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus
Ozgur, Ebru; Afsar, Nilufer; de Vrije, Truus; Yucel, Meral; Gündüz, Ufuk; Claassen, Pieternel A. M.; Eroglu, Inci (2010-01-01)
Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch ...
Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by Response Surface Methodology
Akman, Melih Can; Bayramoğlu, Tuba Hande; Gündüz, Ufuk; EROĞLU, İNCİ (2015-04-27)
Biohydrogen, which can be produced by dark fermentation and photofermentation processes, is a renewable and clean approach for hydrogen production. In this study, it was aimed to determine the operational conditions which satisfy the highest photofermentative hydrogen production rate in batch reactors. To that purpose, the effects of initial substrate concentration, initial volatile suspended solids (VSS) concentration and light intensity on photofermentation process, and their interactive effects were inve...
Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus
Sevinc, Pelin; Gündüz, Ufuk; EROĞLU, İNCİ; Yucel, Meral (2012-11-01)
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 degrees C) and light intensities (1500, 2000, 3000, 4000 and 50...
Citation Formats
D. D. Androga, E. Ozgur, İ. EROĞLU, U. Gündüz, and M. Yucel, “Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 16421–16429, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31804.