Pattern extraction by using both spatial and temporal features on Turkish meteorological data

Goler, Işıl
With the growth in the size of datasets, data mining has been an important research topic and is receiving substantial interest from both academia and industry for many years. Especially, spatio-temporal data mining, mining knowledge from large amounts of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data are collected in various applications. Therefore, spatio-temporal data mining requires the development of novel data mining algorithms and computational techniques for a successful analysis of large spatio-temporal databases. In this thesis, a spatio-temporal mining technique is proposed and applied on Turkish meteorological data which has been collected from various weather stations in Turkey. This study also includes an analysis and interpretation of spatio-temporal rules generated for Turkish Meteorological data set. We introduce a second level mining technique which is used to define general trends of the patterns according to the spatial changes. Genarated patterns are investigated under different temporal sets in order to monitor the changes of the events with respect to temporal changes.


Data mining analysis of economic indicators of countries
Güngör, Erdem; Yozgatlıgil, Ceylan; Department of Statistics (2020-8)
Data Mining is becoming a famous analysis day by day to reveal the hidden information within big data. In the study, we use data mining techniques on the economic indicators of the countries. The four data mining techniques are to be implemented on the dataset. Making homogenous groups of the countries whose economic characteristics are similar are obtained by the Clustering Algorithm. After the clustering algorithm is performed, we pass to Association Rule Data Mining to investigate the most exported produ...
Volkovich, Zeev (Vladimir); Barzily, Zeev; Weber, Gerhard Wilhelm; Toledano-Kitai, Dvora (2009-06-03)
Among the areas of data and text mining which are employed today in science, economy and technology, clustering theory serves as a preprocessing step in the data analyzing. However, there are many open questions still waiting for a theoretical and practical treatment, e.g., the problem of determining the true number of clusters has not been satisfactorily solved. In the current paper, this problem is addressed by the cluster stability approach. For several possible numbers of clusters we estimate the stabil...
Optimization of an online course with web usage mining
Akman, LE; Akkan, B; Baykal, Nazife (2004-02-18)
The huge amount of information existing in the World Wide Web constitutes an ideal environment to implement data mining techniques. Web mining is the mining of web data. There are different applications of web mining: web content mining, web structure mining and web usage mining. In our study we analyzed an online course by web usage mining techniques in order to optimize the navigation paths, the duration of the time spend on each page and the number of visits throughout the semester of the course. Moreove...
Big data maturity models for the public sector: a review of state and organizational level models
OKUYUCU, ARAS; Yavuz, Nilay (Emerald, 2020-07-01)
Purpose Despite several big data maturity models developed for businesses, assessment of big data maturity in the public sector is an under-explored yet important area. Accordingly, the purpose of this study is to identify the big data maturity models developed specifically for the public sector and evaluate two major big data maturity models in that respect: one at the state level and the other at the organizational level. Design/methodology/approach A literature search is conducted using Web of Science an...
Data Management in Astrobiology: Challenges and Opportunities for an Interdisciplinary Community
Aydınoğlu, Arsev Umur; Malone, Jim (2014-06-01)
Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of data management p...
Citation Formats
I. Goler, “Pattern extraction by using both spatial and temporal features on Turkish meteorological data,” M.S. - Master of Science, Middle East Technical University, 2010.